Thermodynamics
Thermodynamic processes
1. Isothermal process:
$T=$ constant
$\mathrm{dT}=0$
$\Delta \mathrm{T}=0$
2. Isochoric process:
$V=$ constant
$\mathrm{d} V=0$
$\Delta \mathrm{V}=0$
3. Isobaric process:
$P =$ constant
$\mathrm{dP}=0$
$\Delta \mathrm{P}=0$
4. Adiabatic process: $q=0$
or heat exchange with the surrounding $=0$ (zero)
IUPAC Sign convention about Heat and Work :
Work done on the system = Positive
Work done by the system $=$ Negative
$1^{\text {st }}$ Law of Thermodynamics
$\Delta U=\left(U_{2}-U_{1}\right)=q+w$
Law of equipartition of energy :
$U=\frac{f}{2} n R T \quad$ (only for ideal gas)
$\Delta \mathrm{E}=\frac{\mathrm{f}}{2} \mathrm{nR}(\Delta \mathrm{T})$
where $f=$ degrees of freedom for that gas. (Translational + Rotational)
$\mathrm{f}=3$ for monoatomic
$f =5$ for diatomic or linear polyatomic
$f=6$ for non - linear polyatomic
Calculation of heat $(q)$ :
Total heat capacity :
$$ \mathrm{C}_{\mathrm{T}}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{T}}=\frac{\mathrm{dq}}{\mathrm{dT}}=\mathrm{J} /{ }^{\circ} \mathrm{C} $$
Molar heat capacity :
$$ C=\frac{\Delta q}{n\Delta T}=\frac{d q}{n d T}=J{mole^{-1}} K^{-1} $$
$$ C_{P}=\frac{\gamma R}{\gamma-1} $$
$$ C_{V}=\frac{R}{\gamma-1} $$
Specific heat capacity (s) :
$$ \mathrm{S}=\frac{\Delta \mathrm{q}}{\mathrm{m} \Delta \mathrm{T}}=\frac{\mathrm{dq}}{\mathrm{mdT}}=\mathrm{Jgm}^{-1} \mathrm{~K}^{-1} $$
WORK DONE (w) :
Isothermal reversible expansion/compression of an ideal gas :
$$ W = -nRT \ln (V_f / V_i) $$
Reversible and irreversible isochoric processes.
Since $d V=0$
So $d W=-P_{\text {ext }} \cdot d V=0$.
Reversible isobaric process :
$$ W=P\left(V_{f}-V_{i}\right) $$
Adiabatic reversible expansion :
$$ \Rightarrow T_2 ~V_2^{\gamma-1} = T_1 ~V_1^{\gamma-1} $$
Reversible Work :
$$ W = \frac{P_2 V_2 - P_1 V_1}{\gamma - 1} = \frac{nR(T_2 - T_1)}{\gamma - 1} $$
Irreversible Work :
$$ W = \frac{P_2 V_2 - P_1 V_1}{\gamma - 1} = \frac{nR(T_2 - T_1)}{\gamma - 1} $$
$$ = nC_v(T_2-T_1)= -P_{ext}(V_2-V_1) $$
and use $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
Free expansion-Always going to be irrerversible and since $P_{\text {ext }}=0$
so $\mathrm{dW}=-\mathrm{P}_{\mathrm{ext}}$. $\mathrm{dV}=0$
If no heat is supplied $q=0$
then $\Delta \mathrm{E}=0 \quad$ so $\quad \Delta \mathrm{T}=0$.
Application of $I^{st}$ Law :
$\Delta U = \Delta Q + \Delta W $ $\Rightarrow \Delta W=-P \Delta V $
$\therefore \Delta U = \Delta Q - P\Delta V $
Constant volume process
Heat given at constant volume $=$ change in internal energy
$\therefore \mathrm{du}=(\mathrm{dq})_{\mathrm{v}}$
$\mathrm{du}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}$
$C_{v}=\frac{1}{n} \cdot \frac{d u}{d T}=\frac{f}{2} R$
Constant pressure process:
$$\mathrm{H} = Enthalpy \text {(state function and extensive property)}$$
$$\mathrm{H}=\mathrm{U}+\mathrm{PV}$$
$$ \Rightarrow C_{p}-C_{v}=R \text { (only for ideal gas) } $$
Second Law Of Thermodynamics :
$\Delta S_{universe} = \Delta S_{system} + \Delta S_{surrounding} > 0 $ for a spontaneous process.
Entropy (S):
$$ \Delta S_{system} = \int_{A}^{B} \frac{d q_{\text {rev }}}{T} $$
Entropy calculation for an ideal gas undergoing a process :
$$ \text{State A} \quad \xrightarrow[\Delta \mathrm{S}_{\mathrm{irr}}]{\mathrm{irr}} \quad \text{State B} $$
$ P_1, V_1, T_1 \quad \quad\quad \quad P_2, V_2, T_2 $
$\Delta S_{\text {system }}=nc_{v} \ln \frac{T_2}{T_1}+ nR \ ln \frac{V_2}{V_1}\quad $(only for an ideal gas)
Third Law Of Thermodynamics :
The entropy of perfect crystals of all pure elements & compounds is zero at the absolute zero of temperature.
Gibb’s free energy (G) : (State function and an extensive property)
$$ G_{system } = H_{system } - TS_{system } $$
Criteria of spontaneity :
PYQ-2023- Chemical equilibrium-Q1
(i) If $\Delta G_{\text {system }}$ is $(-\mathrm{ve})<0 \Rightarrow$ process is spontaneous
(ii) If $\Delta \mathrm{G}_{\text {system }}$ is $>0 \quad \quad \Rightarrow$ process is non spontaneous
(iii) If $\Delta G_{\text {system }}=0 \quad \quad \Rightarrow$ system is at equilibrium.
Physical interpretation of $\Delta \mathbf{G}:$
$\rightarrow$ The maximum amount of non-expansional (compression) work which can be performed.
$\Delta \mathrm{G}=\mathrm{dw}_{\text {non-exp }}=\mathrm{dH}-\mathrm{TdS}$.
Standard Free Energy Change $\left(\Delta \mathbf{G}^{\circ}\right)$
1. $\Delta \mathrm{G}^{\circ}=-2.303 \text{ RT} \log _{10} \mathrm{~K}$
2. At equilibrium $\Delta \mathrm{G}=0$.
3. The decrease in free energy $(-\Delta G)$ is given as :
$$ \quad \quad -\Delta G = W_{net}=2.303 \ nRT \ log_{10} \frac{V_2}{V_1} $$
4. $\Delta \mathrm{G}_{\mathrm{f}}^{0}$ for elemental state $=0$
5. $\Delta G_{f}^{0}=G_{\text {products }}^{0}-G_{\text {Reactants }}^{0}$
Thermochemistry :
Change in standard enthalpy
$ \Delta H^{0} = H_{m, 2}^{0}- H_{m, 1}^{0}$
heat added at constant pressure.
$=C_{P} \Delta T.$
If $ \ H_{products }>H_ {reactants } $
$\rightarrow \quad$ Reaction should be endothermic as we have to give extra heat to reactants to get these converted into products
and if $\ H_{products }>H_ {reactants } $
$\rightarrow \quad$ Reaction will be exothermic as extra heat content of reactants will be released during the reaction.
Enthalpy change of a reaction :
$ \Delta H_{reaction } = H_{products }>H_ {reactants }$
$ \Delta H_{reaction } = H_{products }^{0} > H_ {reactants }^{0}$
$ \quad \quad \quad = positive - endothermic $
$ \quad \quad \quad = negative - exothermic $
Temperature Dependence Of $\Delta \mathrm{H}$ : (Kirchoff’s equation):
For a constant pressure reaction
$\Delta H_{2}{ }^{0}=\Delta H_{1}{ }^{0}+\Delta C_{p}(T_2-T_1)$
where $\Delta C_{P}=C_{P}(products)-C_{P}(reactants).$
For a constant volume reaction
$$ \Delta E_{2}^{0}=\Delta E_{1}^{0}+\int \Delta C_{V}\cdot dT $$
Enthalpy of Reaction from Enthalpies of Formation :
The enthalpy of reaction can be calculated by
$v_{\mathrm{B}}$ is the stoichiometric coefficient.
Estimation of Enthalpy of a reaction from bond Enthalpies:
PYQ-2023- Chemical equilibrium-Q7
$ \Delta H $= (Enthalpy required to break reactants into gaseous atoms )$ - $
(Enthalpy released to form products from the gaseous atoms )
Resonance Energy :
$\Delta H_{resonance }^{0} $
$=\Delta H_{f, experimental}^{0}-\Delta H_{f,calclulated}^{0} $
$=\Delta H_{c,calclulated}^{0}-\Delta H_{c,experimental} ^{0} $