Complex Numbers
JEE Concepts
-
Complex numbers: a + bi, where a and b are real, i² = -1.
-
Modulus or Magnitude: √(a² + b²).
-
Conjugate: z* = a - bi
-
Argand Diagram: Complex numbers represented on a plane, real =horizontal, imagnary = vertical.
-
De Moivre’s theorem: r^(1/n)(cos(θ + 2kπ)/n + isin(θ + 2kπ)/n), k = 0, 1, 2, …, n-1.
-
Polar form: z = r(cosθ + isinθ).
-
Euler’s formula: e^(iθ) = cosθ + isinθ
-
Applications: Quadratic equations, trigonometry, electrical engineering.
CBSE Board Concepts
-
Basics: a + bi, where a and b are real.
-
Modulus & Magnitude: |z| = √(a² + b²).
-
Conjugate: a - bi
-
Argand Diagram: Complex numbers represented on a plane.
-
Operations: Add, subtract, multiply like a*(b+ci)+d(b-ci) = (ab+cd) +i(ac-db).
-
Division: (a + bi)/(c + di) = [(ac + bd)/(c² + d²)] + [(bc - ad)/(c² + d²)]i
-
Applications: Solve equations, trigonometric.