Gravitation - Result Question 3

3. The figure shows elliptical orbit of a planet $m$ about the sun $S$. The shaded area SCD is twice the shaded area $S A B$. If $t_1$ is the time for the planet to move from $C$ to $D$ and $t_2$ is the time to move from $A$ to $B$ then :

[2009]

(a) $t_1=4 t_2$

(b) $t_1=2 t_2$

(c) $t_1=t_2$

(d) $t_1>t_2$

Show Answer

Answer:

Correct Answer: 3. (b)

Solution:

  1. (b) According to Kepler’s law, the areal velocity of a planet around the sun always remains constant.

$SCD: A_1-t_1$ (areal velocity constant)

$SAB: A_2-t_2$

$\frac{A_1}{t_1}=\frac{A_2}{t_2}$,

$t_1=t_2 \cdot \frac{A_1}{A_2} \quad(.$ given $.A_1=2 A_2)$

$ \begin{aligned} & =t_2 \cdot \frac{2 A_2}{A_2} \\ & \therefore \quad t_1=2 t_2 \end{aligned} $

The area covered by radius vector in $d t$ seconds $=$

$\frac{1}{2} r^{2} d \theta$

$ \begin{gathered} \text{ Area velocity }=\frac{1}{2} r^{2} \frac{d \theta}{d t}=\frac{1}{2} r^{2} \omega \quad(\because \omega \frac{d \theta}{d t}) \\ =\frac{1}{2} r v \quad(\because v=\omega r) \end{gathered} $

It follows that speed of the planet is maximum when it is closest to the sun and is minimum when the planet is farthest from the sun.



NCERT Chapter Video Solution

Dual Pane