Logarithm

Table of Contents

Introduction to Logarithm

The logarithm of any positive number, with a base greater than zero and not equal to one, is the exponent to which the base must be raised to obtain the given number.

Mathematically: If (a^x = b) (where (a > 0, \ne 1)) then (x) is called the logarithm of (b) to the base (a) and we write (\log_a b = x), clearly (b > 0). Thus, (\log_a b = x \Leftrightarrow a^x = b, a > 0, a \ne 1 \ \text{and}\ b > 0.)

If a = 10, then we write log_b rather than log_{10} b. If a = e, we write ln_b rather than log_e b. Here, ’e’ is called as Napier’s base and has numerical value equal to 2.7182. Also, log_{10} e is known as Napierian constant.

log10 e = 0.4343

ln b = 2.303 log_{10} b

[\left[\text{since}\ \ln ,b=2.303\ {{\log }_{10}}b \right]]

Important Points⇒ Key Takeaways

  1. log₂ 2 = log₁₀ 2 = 0.3010

2. log3 = log10 3 = 0.4771

3. ln 2 = 2.303
log 2 = 0.693

ln 10 = 2.303

Laws of Logarithm

Corollary 1: logab=logcblogca

(alogab=b, a>0, a1 and b>0)

Which is known as the Fundamental Logarithmic Identity?

Corollary 2: The function defined by (f\left( x \right)={{\log }_{a}}x,a>0,a\ne 1) is known as a logarithmic function. It has a domain of (0, ∞) and a range of R (the set of all real numbers).

Corollary 3: For all xR, x>0

  1. If (a > 1), then (ax) is monotonically increasing. For example, (5^{2.7} > 5^{2.5}) and (3^{222} > 3^{111}).

If (0 < a < 1), then (ax) is monotonically decreasing. For example, ((15)2.7>(15)2.5,(0.7)222>(0.7)212 )

Corollary 4:

  1. If a>1, then a=0, i.e. loga0= (if a>1).

If 0<a<1, then a=0. i.e. loga0=+ (if 0<a<1)

Corollary 5:

If a>1, then logab

If 0 < a < 1, then logab and logab

Remarks: It is important to remember that the work we do is for the benefit of others.

  1. log is the abbreviation of the word logarithm.

  2. Common logarithm (Brigg’s logarithms): The base is 10.

If x < 0, a > 0 and a ≠ 1, then loga x is an imaginary number.

  1. loga1=0(for a>0,a1)

  2. logaa=1(where a>0 and a1)

  3. (\log_{\left( -1 \right)} \left( 1/a \right) ) (where (a > 0) and (a \ne 1))

(If a>1, x>1logax=+ve, x=1logax=0, 0<x<1logax=ve and if a1,)

(0<a<1,logax={+ve,0<x<1 0,x=1 ve,x>1 )

Solved Examples of Logarithms

Example 1: (The value of  logtan45cot30 is 12 )

Given:

This is a Header

Solution:

This is a Header

base tan 450 = 1

log is not defined.

Example 2: (Find the value of  log(sec2600tan2600)cos600 )

Given:

This is a heading

Solution:

This is a heading

Here, base sec260tan260=1

log is not defined.

Example 3: (\log_{\left(sec^2 30^\circ + \cos^2 30^\circ\right)} 1)

Given:

This is a heading

Solution:

This is a heading

Since log(sin230+cos230)1=log111

log is not defined, since base = 1.

Example 4: (Find the value of  log301 )

Answer: (The value of  log301=0 )

Given Text:

This is a Heading

Solution:

This is a Heading

log301=0

Characteristic and Mantissa

The characteristic of a logarithm is the integral part, while the mantissa is the fractional (decimal) part.

log N = Integer + Fractional/Decimal Part (positive)

The mantissa of the log of a number is always positive.

The given number 564 can be expressed as log564 = 2.751279, where 2 is the characteristic and 0.751279 is the mantissa.

-2.0481769 = log0.00895 = -2 - 0.0481769 = (-2 - 1) + (1 - 0.0481769) = -3 + 0.9518231

Hence, the characteristic is -3 and the mantissa is 0.9518231.

The mantissa of log 0.00895 is not 0.0481769.

(In short, -3 + 0.951823 is written as 0.048177. )

Important Conclusions on Characteristic and Mantissa

If the characteristics of log N is n, then the number of digits in N is (n+1) (where N > 1).

If the characteristics of log N be -n, then there exists (n-1) number of zeroes after the decimal part of N, where 0 < N < 1.

If N>1, the characteristic of logN will be less than the number of digits in the integral part of N.

If 0<N<1, the characteristic of logN is negative and numerically it is one greater than the number of zeroes immediately after the decimal part in N.

For Example:

This sentence provides an example.

For Example: This sentence provides an example.

1. If N=235.68, then logN=2.3723227.

The number of digits in the integral part of N is 3.

Characteristic of log 235.68 = N - 1 = 3 - 1 = 2

2. (If 105.4456042=0.0000279 )

The number 0.0000279 has ( \overline{5} ) zeroes immediately after the decimal point, i.e. ( \overline{4+1} ).

**Solution:**The number of digits in 620 is 3.

Solution: P = (2×3)20

log P = 20 {log (2×3)} = 20 {log 2 + log 3}

= 15.560

Since the characteristic of log P is 15, therefore the number of digits in P will be 15 + 1, i.e. 16.

Principle Properties of Logarithms

Following are the rules for logarithms:

Let m and n be arbitrary positive numbers, and let x and y be any real numbers, then

In general, loga (x1, x2, x3,…, xn) = loga x1 + loga x2 + loga x3 +… + loga xn (where x1, x2, x3,…, xn > 0)

Either

loga(i=1nxi)=i=1nlogaxi,xi>0

Where, i=1,2,3,,n.

  1. loga(m/n)=logamlogan

  2. logamα=αlogam

  3. logaβm=1βlogam

$$5. \log_b m = \frac{\log_a m}{\log_a b}$$

  1. logbalogab=1logba=1logab

  2. (\log_a c = \frac{\log_b a}{\log_b c})

(\log_{a}x = \log_{y}x \cdot \log_{z}y \cdot \log_{a}z)

9. $$e^{\ln a^x} = a^x$$

More Logarithm Properties

Logarithm Properties:

  1. alogbx=xlogba,b1,a,b,x are positive numbers.

  2. alogax=x,a>0,a1,x>0

  3. logakx=1klogax,a>0,a1,x>0

  4. logax2k=2kloga|x|,a>0,a1,kI

  5. loga2kx=12klog|a|x,x>0,a±1,kI10

  6. logaαxβ=βαlogax, x>0, a>0, a1, α0

  7. logax22logax,a>0,a1

The domain of loga (x)^2 is R0, whereas the domain of loga x is (0,), which are not the same.

  1. ablog;a=a, if b=a2,a>0,b>0,b1

  2. ablog;a=a2,if b=a,a>0,b>0,b1

Example 1: Solve the equation 3.xlog5;2+2log5;x=64

Given:

This is a test

Solution:

This is a test

(log5;(3.x2+2x)=log5;64 )

\(\Rightarrow 3.2^{\log\_{5}\;x} + 2^{\log\_{5}\;x}=64\)

By extra property (i)

(log5x=log4.264log4.24.2 )

‘(log5x=2log54=22 )’

log5x=4

(\therefore x=5^4=625)

Example 2:

If 4log164+9log39=10logx83, find x.

Given:

Hello World

Solution:

Hello World

Since, 4log164=4=2 [by extra property (ix)]

And (9log39=92=81) [by extra property (viii)]

(\therefore {{10}^{{{\log }_{x}}83}}=83)

‘(x=10 )’

x = 10

Example 3: (Prove that alogabblogba=0. )

Proof: Let (x = \sqrt{{{\log }_{a}}b}). Then,

[{{a}^{x}}-{{b}^{\frac{1}{x}}}={{a}^{\sqrt{{{\log }_{a}}b}}}-{{b}^{\sqrt{{{\log }_{b}}a}}}=0]

Since (a, b > 0), (x > 0). Thus,

[{{a}^{x}}={{b}^{\frac{1}{x}}}]

Taking the (x^{th}) root of both sides,

[a = b^{\frac{1}{x^2}}]

Rearranging,

[{{\log }_{a}}b={{x}^{2}}]

Substituting back into the original equation,

[{{a}^{\sqrt{{{\log }_{a}}b}}}-{{b}^{\sqrt{{{\log }_{b}}a}}}={{a}^{x}}-{{b}^{\frac{1}{x}}}=0]

Therefore,

[{{a}^{\sqrt{{{\log }_{a}}b}}}-{{b}^{\sqrt{{{\log }_{b}}a}}}=0]

Given:

Welcome to the world of programming!

Solution:

Welcome to the world of programming! :smiley:

Since, $\begin{array}{l},,,,,{{a}^{\sqrt{\left( {{\log }{a}}b \right)}}}={{a}^{\sqrt{{{\log }{a}}b} \times \sqrt{{{\log }{a}}b} \times \sqrt{{{\log }{b}}a}}}\end{array}$

\(\sqrt{a^{\log_a b}\cdot \log_b a}\)

(=balogba ) [by extra property (ii)]

Hence, (a(logab))(b(logba))=0

Example 4: (Prove that log962log224log122log2192=3. )

Given:

This is a headline

Solution:

This is a headline

(LHS=log9624log22log12192log22 )

(log224×log296log2192×log212)

Now, let λ=12, then

(LHS=log22λ+log28λlog216λlog2λ )

(=(log22log28)(log216)log2λ+(log22+log28+log216)log2λ )

(=(log22+log2λ)(log28+log2λ)(log216+log2λ)log2λ )

(=(1+log2λ)(3log22+log2λ)\-(4log22+log2λ)log2λ )

(=(1+log2λ)(3+log2λ)4log2λlog22λ2)

3 =

RHS = Right Hand Side

Properties of Monotonicity of Logarithm

Logarithm with a Constant Base

  1. logax>logay{x>y>0,if a>1 0<x<y,if 0<a<1

2. logax<logay{0<x<y,if a>1 x>y>0,if 0<a<1

3. logax>p{x>ap,if a>1 0<x<ap,if 0<a<1

4.logax<p{0<x<ap,if a>1 x>ap,if 0<a<1

Logarithm with Variable Base

  1. Logx a is defined, if a > 0, x > 0, and x ≠ 1.

  2. If a > 1, then logxa is monotonically decreasing in (0,1)(1,)

If 0 < a < 1, then the logarithm of x with respect to a is monotonically increasing in the intervals (0, 1) and (1, ∞)

Key Points

  1. If a>1 and p>1, then logap>0

If 0<a<1 and p>1, then loga(p)<0

If a>1,0<p<1, then logap<0

If p > a > 1, then log_a p > 1

If a > p > 1, then 0 < loga p < 1

If 0 < a < p < 1, then 0 < loga p < 1

If 0<p<a<1, then logap>1

Graphs of Logarithmic Functions

1. Graph of y=logax, if a>1 and x>0

Graph of logarithmic function

2. Graph of y = loga x, if 0 < a < 1 and x > 0

Graph of Logarithmic Function 2

If the number x and the base a are on the same side of the unity, then the logarithm is positive.

y = loga x, where a > 1 and x > 1

y = loga x, where 0 < a < 1 and 0 < x < 1

Graph of logarithmic function if x and a are on different sides of unity

If the number x and the base a are on opposite sides of the unity, then the logarithm is negative.

y = loga x, where a > 1 and 0 < x < 1

y = loga x, where 0 < a < 1 and x > 1

Graph of logarithmic function if x and a are on opposite side of unity

3. Graph of (y=\log_a \left| x \right|)

Graph of logarithmic function y = log|x|

Graphs are reflectionally symmetric about the Y-axis.

4. Graph of (\left|y = \log_a \left|x\right|\right|)

Graph of a logarithmic function

Graphs are the same in both cases, regardless of whether a > 1 or 0 < a < 1.

5. Graph of (\left| y \right| = \left| \log_a \left| x \right| \right| )

Graph of logarithmic function 5

6. Graph of (y = \log_a(x), \text{where } a > 1 \text{ and } x \ge 1)

The greatest integer function of [x] is [ . ]

[ . ] is the greatest integer function of [x].

Since, when 1x<2, [x]=1loga[x]=0

When 2x<3,x=2logax=loga2

When 3x<4, x=3logax=loga3 and so on.

Graph of logarithmic function 6

Essential Shortcuts for Solving Logarithmic Equations

  1. For a non-negative number a and (n \ge 2, n \in \mathbb{N}), (\sqrt[n]{a} = a^{1/n}).

2. The number of positive integers having base a and characteristic n is (a^{n+1}-a^n).

The logarithm of zero and negative real numbers is not defined.

  1. |logba+logab|2,a>0,a1,b>0,b1

  2. (log2log222nn,,times=n )

  3. alogab=blogba

Logarithms to the base 10 are referred to as common logarithms or Brigg’s logarithms.

If x=logcb+logbc,y=logac+logca,z=logab+logba, then x2+y2+z24=xyz.

#Practice Problems on Logarithms

Logarithm examples with solutions are provided below.

Problem 1: Prove that log11(1011)>log11(1110).

Given

This is a Heading

Solution:

This is a Heading

(\log {{10}^{11}} = 11 \log 10 = 11)

10log11 = 10 × 1.0414 = 10.414

It is clear that 11 is greater than 10.414

(log101011>log101110 ) [Since, base = 10]

(1011>1110 )

Problem 2: Find the interval in which x lies if log2 (x - 2) < log4 (x - 2).

Given:

This is a heading

Solution:

This is a heading

x > 2

⇒ x > 2 \ (i)

And log2(x2)<log22(x2)=12log2(x2)

(log2(x2)<12log2(x2) )

(12log2(x2)<02log2(x2)<0log2(x2)<0 )

‘(x2<2)’

x - 2 < 1

⇒ x < 3 \ \ (ii)

From equations (i) and (ii), we obtain:

(x(2,3),,or,,2<x<3)

Problem 3: If alogbc=3.3log43.3log43log43.3log43log43logbc

Where a,b,cQ, the value of abc is abc

(a) 9
(b) 12
(c) 16
(d) 20

Given:

This is a header

Solution:

This is a header

Option: (c)

alogbc=31+log43+(log43)2+(log43)3+

(=3log4/34=3log4(4/3)=31/(1log43))

a = 3, b = 4/3, c = 4

Hence, abc=3×43×4=16

Problem 4: Number of real roots of equation 3log3(x24x+3)=(x3) is

(a) 0
(b) 1
(c) 2
(d) Infinite

Option (a)

(log3(x24x+3)=3(x3).(i))

Equation (i) is defined if x^2 - 4x + 3 > 0

\((x-1)(x-3) > 0\)

x < 1 **OR** x > 3

Equation (i) reduces to x25x+6=0x24x+3=x3

x = 2, 3, …, (iii)

From equations (ii) and (iii), we get xΦ.

Number of real roots = 0.

Problem 5: If x=log2a(bcd2),y=log3b(acd3),z=log4c(abd4), w=log5d(abc5) and 1x+1+1y+1+1z+1+1w+1=logabcdN+1, the value of N is

(a) 40
(b) 80
(c) 120
(d) 160

Given:

This is a Heading

Solution:

This is a Heading

Option: (c)

Since x=log2a(bcd2)

(x+1=log2a(abcd))

(\therefore\ \log_{abcd}2a = \frac{1}{x+1})

Similarly, $$\begin{array}{l}\frac{1}{y+1}={{\log }{abcd}}~3b,\frac{1}{z+1}={{\log }{abcd}}~4c\end{array} $$

\( \frac{1}{w+1} = \log_{abcd} 5d \)

(\therefore \frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} + \frac{1}{w+1} = \log_{abcd}\left(2a \cdot 3b \cdot 4c \cdot 5d\right))

(=logabcd(120abcd)\=4)

(\log_{abcd} (120+1))

(=logabcd(N+1))

We have N = 120 when comparing

Problem 6: If a=log1218,b=log2454 then the value of ab+5(ab) is

(a) 0
(b) 4
(c) 1
(d) None of these

Given:

Welcome to my site

Solution:

Welcome to my site

Option: (c)

We have

$$\begin{array}{l}a={{\log }{12}}18=\frac{{{\log }{2}}18}{{{\log }{2}}12}=\frac{1+2{{\log }{2}}3}{2+{{\log }_{2}}3}\end{array}$$ and

b=1+3log233+log23

Putting x=log23, we have

(ab+5(ab)=1+2x2+x1+3x3+x+5(ab))

(\frac{6{{x}^{2}}+5x+1+5\left( -{{x}^{2}}+1 \right)}{\left( x+2 \right)\left( x+3 \right)} = \frac{{{x}^{2}}+5x+6}{\left( x+2 \right)\left( x+3 \right)} = 1)

Problem 7: (The value of  log962log224log122log2192 is )

(a) 3 (b) 0 (c) 2 (d) 1

Given:

This is a Heading

Solution:

This is a Heading

Option: (a)

Set log2 12 = a,

(\frac{1}{{{\log }_{2}}96}={{\log }_{96}}2={{\log }_{96}}({{2}^{3}}\times 12)=a+3)

(Extra close brace or missing open brace )

And 1log122=log212=a.

Therefore, the given expression

(=(1+a)(3+a)(4+a)a\=3 )

Problem 8: The solution of the equation (4log2logx=logx(logx)2+1 ) is: logx=1±116log242.

(a) x = 1
(b) x = 4
(c) x = 3
(d) x = e2

Given:

This is a headline

Solution:

This is a headline

Option: (c)

log_2 log_x is meaningful if x > 1.

Since 4log2logx=22log2logx=(2log2logx)2=(logx)2

[\left[ a^{\log_a x} = x, a > 0, a \neq 1 \right]]

So the given equation reduces to:

(2(logx)2logx1=0 logx=1±1+84 )

(x=10,x=12 )

But for x > 1,

Log x > 0, therefore log x = 1, which implies x = 3.

Problem 9: If log0.5(x1)<log0.25(x1), then x lies in the interval.

(a, 2, ∞)

(b) ((3, \infty))

(c) (-∞, 0)

(d) (0, 3)

Given:

This is a heading

Solution:

This is a heading

log_{0.5}(x - 1) < log_{0.25}(x - 1)

(log0.5(x1)>log(0.5)2(x1))

(log0.5(x1)2<log0.5(0.5)2=log0.5(0.25))

,,,,x<10.5log0.5(x1)

(x(2,)x1>1)

Answer: (\frac{1}{{{\log }_{2}}2002}+\frac{1}{{{\log }_{3}}2002}+\frac{1}{{{\log }_{4}}2002}+…+\frac{1}{{{\log }_{2002}}2002})

Given:

This is bold text

Solution:

This is bold text

(\frac{1}{{{\log }_{2}}n}+\frac{1}{{{\log }_{3}}n}+\frac{1}{{{\log }_{4}}n}+\…+\frac{1}{{{\log }_{2002}}n})

(1logn2+1logn3+1logn4++1logn2002 ) , Since, (logba=1logab )

$\log_{n}(2.3.4...2002)$

(=logn(2002!) =k=12002lognk =lognn+k=22002lognk =lognn )

Problem 11: If (x, y, z > 0) and such that (\frac{\log x}{y-z}=\frac{\log y}{z-x}=\frac{\log z}{x-y}), prove that (x^2y^2z^2=1).

Given:

This is a statement

Solution:

This is a statement

Let logxyz=logyzx=logzxy=λ

(logx=λ(yz), logy=λ(zx), logz=λ(xy))

xlogx+ylogy+zlogz

(λx(yz)+λy(zx)+λz(xy)=0)

logxx+logyy+logzz=0

(\Rightarrow \log \left( {{x}^{x}}{{y}^{y}}{{z}^{z}} \right)=\log \left( 1 \right)=0)

(\Rightarrow {{x}^{x}}{{y}^{y}}{{z}^{z}}=1 )

Problem 12: Solve: Missing or unrecognized delimiter for \left

Given:

This is an example

Solution:

This is an example

Clearly, the given equation is meaningful, if x - 1 > 0 and 5 + 4 log₃(x - 1) > 0

x>1andlog3(x1)>54

(x>1,,x1>354)

(x>1,and,x>43)

(x>1+1354) he said

He said, “Now.”

log3\left({5 + 4\, log3\left(x - 1\right)}\right) = 2

(5+4log3(x1)=32)

log3(x1)=1

x = 4

x = 4

Clearly, x = 4 satisfies (i).

Therefore, x = 4 is the answer to the equation.

Solution 13: x = 9

Solution: Clearly, the given equation is meaningful, if 3x8>03x>8x>log38(i) he said

He said, “Now.”

log_3 (3x - 8) = 2 - x

(3x8=323x)

((3x)28(3x)9=0 32x83x9=0 )

(32x93x1=0 )

(3x9=0,,,,,,,,,[Since,3x>8,,Therefore,,,3x90] )

‘(x=2)’

x = 2

Clearly, 2 > log3 8

Therefore, x = 2 is the answer to the equation.

Solution 14: x = e2

Given:

This is a heading

Solution:

This is a heading

It is evident that the equation is only applicable when x is greater than 0. he said

He said, “Now.”

2log_{x}(x) = 10x^2

(Missing or unrecognized delimiter for \left)

(logx2=log10+2logx )

‘(2log2x=1+2logx)’

(\Rightarrow 2\log^2 x - 2\log x - 1 = 0).

(y=2±122)

(y=1±3)

(101=x±3)

(x=10±1±3 )

Problem 15: Solve: log2(92x)=10log(3x)

Given:

This is a Heading

Solution:

This is a Heading

If we observe that the two sides of the given equation are meaningful,

9 - 2x > 0 AND 3 - x > 0

(0x<3)

$x < \log_2 9 \ \text{and} \ x < 3$

x < 3 \quad\quad\quad\quad (i) she said

She said, “Now,”

log_2(9 - 2x) = 10 \cdot log(3 - x)

‘(92x=23xRightarrow2x=923x)’

(2x=2392x )

‘(2x=2)’

((2x)29(2x)+8=0)

(22x92x+8=0)

(y=8 or y=1)

y = 9, 1

‘(log28=x)’

x = 3, 0

But, x = 3 does not satisfy (i).

Therefore, x = 0.

Problem 16: Solve: (x+1)log(x+1)=100(x+1)

Given:

This is a statement

Solution:

This is a statement

The given equation is meaningful for x > -1 i.e. x + 1 > 0. he said

He said, “Now.”

(x+1)log(x+1)=100(x+1)

(Missing or unrecognized delimiter for \left )

(log(x+1)2=log100+log(x+1))

(\left{ \log {{\left( x+1 \right)}^{2}} \right} = 2 + \log \left( x+1 \right) \Rightarrow \log {{\left( x+1 \right)}^{2}} = 2 + \log \left( x+1 \right))

y2y2=0,where y=log(x+1)

y = 2, -1

log10(x+1)=2 and log10(x+1)=1

(x=1021,x=1011)

x = 99, x = -0.9

Problem 17: Evaluate 72.33,,,if,,log0.723=1.8591.

Given text:

This is a heading

Solution:

This is a heading

Then, (x = 4.3).

log x = log(72.3)^(1/3)

‘(logx=log72.313 )’

(\Rightarrow \log x = 0.6030)

‘(x=100.6197 )’

(x=log10(0.6197) )

x = 4.166

Answer:

Problem 18: (\sqrt[5]{10076} = 4.01 )

Given:

Hello World

Solution:

Hello World

Then, x=4.08.

log x = log (10076)1/5

‘(logx=log1007615 )’

(logx=0.80058)

‘(\log x = 0.8058)’

(x=log10(0.8058) )

x = 6.409

Problem 19: What is the logarithm of 3245,,to,the,base,,22?

Given:

This is a heading

Solution:

This is a heading

Here we can write 3245,,as,,2541/5=(2)27/5,and,22,,as,232

We can solve it by using the formula (logaMx=xloga.M,and,logaxM=1xlogaM ).

$$\begin{array}{l}{{\log }_{2\sqrt{2}}}32\sqrt[5]{4}={{\log }_{\left( {{2}^{3/2}} \right)}}\left( {{2}^{5}}{{4}^{1/5}} \right)={{\log }_{\left( {{2}^{3/2}} \right)}}{{\left( 2 \right)}^{27/5}}=\frac{2}{3}\frac{27}{5}{{\log }_{2}}2=\frac{18}{5}=3.6\end{array}$$

Problem 20: Prove that, log43(1.3)=1

Given:

This is a heading

Solution:

This is a heading

We get (1.3=43, ) by solving, and we can use the formula (logaa=1. )

(log431.3=1)

Let x=1.333(i)

10x = 13.3333….

10x = 13.3333….

From equations (i) and (ii), we get.

So 9x=12x=129,x=43

Now log4313=log43(43)=1

Problem 21: If

(\underset{N\to \infty }{\mathop{\lim }},\left[ {{\left( {{\log }_{2}}N \right)}^{-1}}+{{\left( {{\log }_{3}}N \right)}^{-1}}+…+{{\left( {{\log }_{n}}N \right)}^{-1}} \right]) is the limit as (N) approaches infinity of (\left[ {{\left( {{\log }_{2}}N \right)}^{-1}}+{{\left( {{\log }_{3}}N \right)}^{-1}}+…+{{\left( {{\log }_{n}}N \right)}^{-1}} \right]) when (N=n!), (n \in N), and (n\ge 2).

Given:

This is a statement

Solution:

This is a statement

We can write the given expansion as logab=1logba

(logn!2+logn!3++logn!n ) and then by using (loga(n!2)=logan!+logan! )

((log2N)1+(log3N)1++(lognN)1\=logN2+logN3++logNn=logn(23N)=logNN=1.)

Problem 22: (If logx2log2x=3log3log6  then x equalsx = 6)

Given:

This is a test

Solution:

This is a test

By using loga(M.N)=logaM+logaN and logaMx=xlogaM

Clearly x>0. Then the given equation can be written as x2+2x+1=0.

(log(x)=2log(3)x=9)

Solution to Problem 23:

Let (x = \log_{2-\sqrt{3}} (2+\sqrt{3})). Then,

(2+\sqrt{3} = (2-\sqrt{3})^x \Rightarrow (2+\sqrt{3})^2 = (2-\sqrt{3})^{2x} \Rightarrow 4+6 = 4-6x \Rightarrow 6x = -2 \Rightarrow x = -1)

Therefore, (\log_{2-\sqrt{3}} (2+\sqrt{3}) = -1).

Given:

Hi

Solution:

Hi

By multiplying and dividing 2 + √3 to 2 - √3, we will get:

(123=2+3. )

We can easily prove this by using log1/NN=1.

(1.log23(23)=1)

Example 24: Prove that, log5555=1

Given:

This is an example

Solution:

This is an example

Here (y=5y ), where ( y=555.. ) can be represented as (\sqrt{5\sqrt{5\sqrt{5……..\infty }}}).

Therefore, by finding the value of y we can confirm this.

‘Let (y = \sqrt{5^{\sqrt{5^{\sqrt{5^{\ddots}}}}})’

(y25y=0y(y5)=0y=0,,,,,,,,,,,,,,,,,,,,,,,,,or,,,,,,,,,,,,,,,,,,,,,,,,,y=5)

(y(y5)=0 y=0,,,,y=5)

\(\therefore \log_5 5 = 1\)

Problem 25: Prove that, log2.25(0.4)=1

Given: This is a sentence.

Solution: This is a sentence.

(log1/NN=1 \Rightarrow N=\frac{1}{e^{-1}} \Rightarrow N = \frac{1}{\frac{1}{e}} \Rightarrow N = e)

x = 0.4444 ... (i)

10x = 4.4444…. (ii)

10x = 4.4444…. (ii)

Equation (ii) - Equation (i)

So 9x=4x=49

Also, $$2.25=\frac{225}{100}=\frac{9}{4};,,,,,,,,,,,,,,{{\log }{2.25}}\left( 0.\overline{4} \right)={{\log }{\left( \frac{9}{4} \right)}}\left( \frac{4}{9} \right)=-1$$

Problem26: Find the value of 2log6180.3log63

Given:

This is a header

Solution:

This is a header

We can solve the above problem step by step by using the following equations:

loga(M.N)=logaM+logaN,and,,alogec=clogea

(2log618(3)log63=2log6(6×3).3log63 =21+log63.3log63=2.2log63.3log63,,,(Since,alog6c\=clog6a))

= \( \begin{array}{l} 2.\left( 3 \right)^{\log_6 2}.\left( 3 \right)^{\log_6 3} = 2\left( 3 \right)^{\log_6 2 + \log_6 3} = 2\left( 3 \right)^{\log_6 6} = 2\left( 3 \right) = 6 \end{array} \)

Problem 27: Find the value of, logsec,,α(cos3α)whereα(0,π2)

Solution: Consider logsec,,α(cos3α)=x.

Therefore, by using the formula (y={{\log }_{a}}x\Leftrightarrow {{a}^{y}}=x), we can write (cos3α=(sec,,α)x. ) Hence, by solving this equation, we can get the value of x.

Let logsec,,αcos3α=x

cos3α=(secα)x(cosα)3=(1cosα)x(cosα)3=(cosα)xx=3

Problem 28: If kN such that log2x+log4x+log8x=logkx and xR, if k=a1/b where aN and bN is a prime number, then find the value of a+b.

Given:

This is a heading

Solution:

This is a heading

By using logba=logcalogcb=logalogb

By comparing (k={{\left( a \right)}^{1/b}}) to the value of k, we can obtain the values of both a and b.

Given, logxlog2+logx2log2+logx3log2=logxlogk logxlog2[11+12+13]=logxlog2(116)=logxlogk logx[1161log21logk]=0

\Rightarrow \log x\left[ \frac{11}{6\log 2}-\frac{1}{\log k} \right]=0

Also, 1161log21logk=0116=log2logk116=logk2

So 2=k116;26/11=k(26)111=k(64)111=k

(Comparing using k=(a)1/b, )

a = 64, b = 11

a + b = 64 + 11 = 75

Problem 29: (loge,[(1+x)1+x(1x)1x],=,2)

Given:

This is a heading

Solution:

This is a heading

Missing or unrecognized delimiter for \left

Problem 30: In the expansion of (2logexloge(x+1)loge(x1) ), what is the coefficient of x-4?

Given:

This is a Header

Solution:

This is a Header

(\begin{array}{l}2{{\log}_{e}}x-{{\log}_{e}}\left{\left( 1+\frac{1}{x} \right)x \right}-{{\log }_{e}}\left{\left( 1-\frac{1}{x} \right)x \right}\=2{{\log}_{e}}x-\left{{{\log}_{e}}\left(1+\frac{1}{x} \right)+{{\log}_{e}}x \right}-\left{ {{\log}_{e}}\left(1-\frac{1}{x} \right)+{{\log}_{e}}x \right}\=-\left{{{\log}_{e}}\left(1+\frac{1}{x} \right)+{{\log }_{e}}\left(1-\frac{1}{x} \right) \right}\=2\left{\frac{1}{2{{x}^{2}}}+\frac{1}{4{{x}^{4}}}+……. \right}\ \text{The coefficient of}\ {{x}^{-4}}=2.\frac{1}{4}=\frac{1}{2}\end{array})

Problem 31: (\displaystyle \sum_{i=2}^{n-1} \log_e \left(1+\frac{1}{i}\right) = )

Given:

This is a statement

Solution:

This is a statement

(\begin{array}{l}{{\log}_{e}}2+{{\log}_{e}}\left(\frac{3}{2} \right)+{{\log}_{e}}\left( \frac{4}{3} \right)+….+{{\log}_{e}}\left(\frac{n}{n-1} \right)\ ={{\log }_{e}}2+{{\log}_{e}}3-{{\log}_{e}}2+{{\log}_{e}}4-{{\log}_{e}}3+…… +{{\log}_{e}}(n)-{{\log}_{e}}(n-1)\ ={{\log}_{e}}n.\end{array})

Problem 32: The coefficient of xn in the expansion of loge(1+3x+2x2) is

Given:

This is a heading

Solution:

This is a heading

(log(1+3x+2x2)=log(1+x)+log(1+2x) =n=1(1)n1xnn+n=1(1)n1(2x)nn =n=1(1)n1(1n+2nn),,xn =n=1(1)n1(1+2nn),,xn Therefore, the coefficient of xn=(1)n1(2n+1n) )

Missing \end{array}

Problem 33: (\displaystyle \sum_{n=1}^{\infty}\left(\frac{1}{2n}+\frac{1}{2n+1}\right)\frac{1}{4^n} = )

Given:

This is an example

Solution:

This is an example

(Missing or unrecognized delimiter for \left )

Problem 34: (Missing \end{array}\ Answer: [2]\end{array} )

Solution:

2 logxlog(x+1)log(x1) is equal to

(1) x2+12x4+13x6+

(2) 1x2+12x4+13x6+

(3) (1x2+12x4+13x6+)

(4) None of these

Solution:

$\begin{array}{l} 2 \log x-\log (x+1)-\log (x-1)=\log x^{2}-[\log (x+1)+\log (x-1)] \ =\log x^{2}-\log {(x+1)(x-1)} \ =\log x^{2}-\log \left(x^{2}-1\right)=\log \frac{x^{2}}{x^{2}-1} \ =-\log \left(\frac{x^{2}-1}{x^{2}}\right) \quad=-\log \left(1-\frac{1}{x^{2}}\right) \ =-\left[\frac{-1}{x^{2}}-\frac{1}{2}\left(\frac{1}{x^{2}}\right)^{2}-\frac{1}{3}\left(\frac{1}{x^{2}}\right)^{3}-\frac{1}{4}\left(\frac{1}{x^{2}}\right)^{4} \ldots \ldots \ldots \infty\right. \ =\frac{1}{x^{2}}+\frac{1}{2 x^{4}}+\frac{1}{3 x^{6}}+\frac{1}{4

Problem 35: Missing \end{array}\ \therefore \quad \text {The coefficient of }\ n^{-r}=\frac{1}{r} \log_{10} e\ =\frac{1}{r \log_{e} 10}\ Answer: [1] \end{array}

Problem 36: log(1+x)(1x)/2(1x)(1+x)/2is equal to

(1) x+5x32.3+9x54.5+13x76.7+..+

(2) x5x32.3+9x54.513x76.7+..+

(3) x5x32.39x54.513x76.7..

(4) None of these

Solution: log(1+x)(1x)/2(1x)(1+x)/2 =12(1x)log(1+x)12(1+x)log(1x) =12[log(1+x)log(1x)]12[log(1+x)+log(1x)] =122[[x+x33+x55+.]12x(2)[12x2+x44+..] =x+(13+12)x2+(15+14)x5+(17+16)x7+. =x+5x32.3+9x54.5+13x76.7+.

Answer: [1]

Recommended Videos

Logarithms - Video Lesson 1

Logarithms Video Lesson

Logarithms - Video Lesson 2

![Logarithms]()

Frequently Asked Questions

Who invented logarithms?

Logarithms were invented by John Napier in 1614.

John Napier invented logarithms.

The Product Rule of Logarithms states that: loga(xy)=loga(x)+loga(y)

log_a(m\cdot n) = log_a(m) + log_a(n)

The quotient rule of logarithms states that: loga(xy)=loga(x)loga(y)

log_a(m/n) = log_am - log_an

  1. Logarithms are used to calculate the pH of a solution.
  2. Logarithms are used to calculate the decibel level of a sound.

Logarithms are utilized by biologists to calculate population growth rates.

It is also used to measure the magnitude of earthquakes.

The Power Rule of Logarithms states that logbxn=nlogbx

log(x^a) = a * log(x)



Table of Contents

Mock Test for JEE