Chapter 02 Inverse Trigonometric Functions

Short Answer Type Questions

1. Find the value of $\tan ^{-1}(\tan \frac{5 \pi}{6})+\cos ^{-1}(\cos \frac{13 \pi}{6})$.

Show Answer

Solution

We know that $\frac{5 \pi}{6} \notin(-\frac{\pi}{2}, \frac{\pi}{2})$ and $\frac{13 \pi}{6} \notin[0, \pi]$

$\therefore \tan ^{-1}(\tan \frac{5 \pi}{6})+\cos ^{-1}(\cos \frac{13 \pi}{6})$

$=\tan ^{-1}[\tan (\pi-\frac{\pi}{6})]+\cos ^{-1}[\cos (2 \pi+\frac{\pi}{6})]$

$=\tan ^{-1}[\tan (-\frac{\pi}{6})]+\cos ^{-1}(\cos \frac{\pi}{6})$

$=\tan ^{-1}(-\tan \frac{\pi}{6})+\cos ^{-1}(\cos \frac{\pi}{6})$

$=-\tan ^{-1}(\tan \frac{\pi}{6})+\cos ^{-1}(\cos \frac{\pi}{6}) \quad[\because \tan ^{-1}(-x)=-\tan ^{-1} x]$

$=-\frac{\pi}{6}+\frac{\pi}{6}=0$

Hence, $\tan ^{-1}(\tan \frac{5 \pi}{6})+\cos ^{-1}(\cos \frac{13 \pi}{6})=0$

2. Evaluate: $\cos [\cos ^{-1}(\frac{-\sqrt{3}}{2})+\frac{\pi}{6}]$

Show Answer

Solution

$\cos [\cos ^{-1}(\frac{-\sqrt{3}}{2})+\frac{\pi}{6}]$

$=\cos [\pi-\cos ^{-1} \frac{\sqrt{3}}{2}+\frac{\pi}{6}][\because \cos ^{-1}(-x)=\pi-\cos ^{-1} x]$

$=\cos [\pi-\frac{\pi /}{6}+\frac{\pi /}{6}]=\cos \pi=-1$

$ \text{ Hence, } \cos [\cos ^{-1}(\frac{-\sqrt{3}}{2})+\frac{\pi}{6}]=-1 \text{. } $

3. Prove that: $\cot (\frac{\pi}{4}-2 \cot ^{-1} 3)=7$.

Show Answer

Solution

L.H.S. $\cot (\frac{\pi}{4}-2 \cot ^{-1} 3)$

$=\cot [\tan ^{-1}(1)-2 \tan ^{-1} \frac{1}{3}] \quad[\because \cot ^{-1} x=\tan ^{-1} \frac{1}{x}]$

$=\cot [\tan ^{-1}(1)-\tan ^{-1} \frac{2 \times \frac{1}{3}}{1-(\frac{1}{3})^{2}}][\because 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}]$

$=\cot [\tan ^{-1}(1)-\tan ^{-1} \frac{\frac{2}{3}}{\frac{8}{9}}]$

$=\cot [\tan ^{-1}(1)-\tan ^{-1} \frac{3}{4}]$

$=\cot [\tan ^{-1}(\frac{1-\frac{3}{4}}{1+1 \times \frac{3}{4}})]=\cot [\tan ^{-1}(\frac{\frac{1}{4}}{\frac{7}{4}})]$

$=\cot [\tan ^{-1} \frac{1}{7}] \quad[\because \tan ^{-1} \frac{1}{x}=\cot ^{-1} x]$

$=\cot [\cot ^{-1}(7)]=7$ R.H.S.

Hence proved.

4. Find the value of $\tan ^{-1}(\frac{-1}{\sqrt{3}})+\cot ^{-1}(\frac{1}{\sqrt{3}})+\tan ^{-1}[\sin (\frac{-\pi}{2})]$

Show Answer

Solution

$\tan ^{-1}(\frac{-1}{\sqrt{3}})+\cot ^{-1}(\frac{1}{\sqrt{3}})+\tan ^{-1}[\sin (\frac{-\pi}{2})]$ $=-\tan ^{-1}(\frac{1}{\sqrt{3}})+\tan ^{-1}(\sqrt{3})+\tan ^{-1}(-1)$

$ \begin{bmatrix} \because \tan ^{-1}(-x)=-\tan ^{-1} x \\ \tan ^{-1} x=\cot ^{-1}(\frac{1}{x}) \\ \sin (\frac{-\pi}{2})=-1 \end{bmatrix} $

$ =-\frac{\pi}{6}+\frac{\pi}{3}-\frac{\pi}{4}=\frac{-\pi}{12} \quad[\because \tan ^{-1}(-1)=\frac{-\pi}{4}] $

Hence, $\tan ^{-1}(\frac{-1}{\sqrt{3}})+\cot ^{-1}(\frac{1}{\sqrt{3}})+\tan ^{-1}[\sin (\frac{-\pi}{2})]=\frac{-\pi}{12}$

5. Find the value of $\tan ^{-1}(\tan \frac{2 \pi}{3})$

Show Answer

Solution

We know that $\frac{2 \pi}{3} \notin[\frac{-\pi}{2}, \frac{\pi}{2}]$

$ \begin{aligned} \therefore \tan ^{-1}(\tan \frac{2 \pi}{3}) & =\tan ^{-1}[\tan (\pi-\frac{\pi}{3})]=\tan ^{-1}(-\tan \frac{\pi}{3}) \\ & =-\tan ^{-1}(\tan \frac{\pi}{3})[\because \tan ^{-1}(-x)=-\tan ^{-1} x] \\ & =-\frac{\pi}{3} \in[-\frac{\pi}{2}, \frac{\pi}{2}] \end{aligned} $

Hence, $\tan ^{-1}(\tan \frac{2 \pi}{3})=\frac{-\pi}{3}$.

6. Show that: $2 \tan ^{-1}(-3)=\frac{-\pi}{2}+\tan ^{-1}(\frac{-4}{3})$

Show Answer

Solution

L.H.S. $2 \tan ^{-1}(-3)=-2 \tan ^{-1}(3)$

$ \begin{aligned} & =-\cos ^{-1}[\frac{1-(3)^{2}}{1+(3)^{2}}][\because 2 \tan ^{-1} x=\cos ^{-1}(\frac{1-x^{2}}{1+x^{2}})] \\ & =-\cos ^{-1}(\frac{1-9}{1+9})=-\cos ^{-1}(\frac{-8}{10}) \\ & =-\cos ^{-1}(\frac{-4}{5})=-[\pi-\cos ^{-1}(\frac{4}{5})]=-\pi+\cos ^{-1} \frac{4}{5} \\ & =-\pi+\tan ^{-1}(\frac{3}{4}) \quad[\because \cos ^{-1} \frac{4}{5}=\tan ^{-1} \frac{3}{4}] \end{aligned} $

$ \begin{matrix} =-\pi+\frac{\pi}{2}-\cot ^{-1}(\frac{3}{4}) & {[\tan ^{-1} x=\frac{\pi}{2}-\cot ^{-1} x]} \\ =\frac{-\pi}{2}-\cot ^{-1}(\frac{3}{4}) & {[\because \tan ^{-1} x=\cot ^{-1} \frac{1}{x}]} \\ =\frac{-\pi}{2}-\tan ^{-1}(\frac{4}{3}) & \\ =\frac{-\pi}{2}+\tan ^{-1}(-\frac{4}{3}) \text{ R.H.S. } & \end{matrix} $

Hence proved.

7. Find the real solutions of the equation

$ \tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{2} $

Show Answer

Solution

$\tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{2}$

$ \text{ Let } \quad \theta=\sin ^{-1} \sqrt{x^{2}+x+1} $

$\therefore \quad \sin \theta=\sqrt{x^{2}+x+1}$

$\Rightarrow \tan \theta=\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}} \Rightarrow \theta=\tan ^{-1}(\frac{\sqrt{x^{2}+x+1}}{\sqrt{-x^{2}-x}})$

$\Rightarrow \sin ^{-1} \sqrt{x^{2}+x+1}=\tan ^{-1}(\sqrt{\frac{x^{2}+x+1}{-x^{2}-x}})$

So, $\tan ^{-1} \sqrt{x(x+1)}+\tan ^{-1}(\sqrt{\frac{x^{2}+x+1}{-x^{2}-x}})=\frac{\pi}{2}$

$\Rightarrow \tan ^{-1}[\frac{\sqrt{x(x+1)}+\sqrt{\frac{x^{2}+x+1}{-x(x+1)}}}{1-\sqrt{x(x+1)} \times \sqrt{\frac{x^{2}+x+1}{-x(x+1)}}}]=\frac{\pi}{2}$

$\Rightarrow \tan ^{-1}[\frac{\frac{x(x+1)+\sqrt{-(x^{2}+x+1)}}{\sqrt{x(x+1)}}}{1-\sqrt{-(x^{2}+x+1)}}]=\frac{\pi}{2}$ $\Rightarrow \frac{x^{2}+x-\sqrt{-(x^{2}+x+1)}}{[1-\sqrt{-(x^{2}+x+1)}] \sqrt{x^{2}+x}}=\tan \frac{\pi}{2}=\frac{1}{0}$ $\Rightarrow[1-\sqrt{-(x^{2}+x+1)}] \sqrt{x^{2}+x}=0$ $\Rightarrow[1-\sqrt{-(x^{2}+x+1)}]=0$ or $\sqrt{x^{2}+x}=0$

Here, $\sqrt{-(x^{2}+x+1)} \notin R$

$\therefore \sqrt{x^{2}+x}=0$

$\Rightarrow \quad x^{2}+x=0 \Rightarrow x(x+1)=0$

$\Rightarrow \quad x=0$ or $x+1=0 \Rightarrow x=0$ or $x=-1$

Hence the real solutions are $x=0$ and $x=-1$.

Alternate Method

$ \begin{aligned} & \tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{2} \\ & \Rightarrow \tan ^{-1} \sqrt{x^{2}+x}=\frac{\pi}{2}-\sin ^{-1} \sqrt{x^{2}+x+1} \\ & \Rightarrow \tan ^{-1} \sqrt{x^{2}+x}=\cos ^{-1} \sqrt{x^{2}+x+1}[\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}] \\ & \Rightarrow \cos ^{-1}[\frac{1}{\sqrt{1+x^{2}+x}}]=\cos ^{-1} \sqrt{x^{2}+x+1} \\ & \Rightarrow \quad \frac{1}{\sqrt{x^{2}+x+1}}=\sqrt{x^{2}+x+1} \quad[\because \tan ^{-1} x=\cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}] \\ & \Rightarrow \quad x^{2}+x+1=1 \quad \Rightarrow x^{2}+x=0 \\ & \Rightarrow \quad x(x+1)=0 \quad \Rightarrow x=0 \text{ or } x+1=0 \\ & \therefore \quad x=0, x=-1 \end{aligned} $

8. Find the value of the expression

$ \sin (2 \tan ^{-1} \frac{1}{3})+\cos (\tan ^{-1} 2 \sqrt{2}) $

Show Answer

Solution

$\sin (2 \tan ^{-1} \frac{1}{3})+\cos (\tan ^{-1} 2 \sqrt{2})$

$ \begin{aligned} & \Rightarrow \sin [\tan ^{-1}(\frac{2 \times \frac{1}{3}}{1-(\frac{1}{3})^{2}})]+\cos [\cos ^{-1} \frac{1}{\sqrt{1+(2 \sqrt{2})^{2}}}] \\ & {[\because \tan ^{-1} x=\cos ^{-1}(\frac{1}{\sqrt{1+x^{2}}})]} \\ & \Rightarrow \sin [\tan ^{-1}(\frac{\frac{2}{3}}{1-\frac{1}{9}})]+\cos [\cos ^{-1}(\frac{1}{3})] \\ & .\Rightarrow \sin [\tan ^{-1}(\frac{3}{4})]+\frac{1}{3} \Rightarrow \sin ^{-1}(\frac{3}{5})]+\frac{1}{3} \\ & \Rightarrow \frac{3}{5}+\frac{1}{3} \Rightarrow \frac{14}{15} \\ & \text{ Hence, } \sin (2 \tan ^{-1} \frac{1}{3})+\cos (\tan ^{-1} 2 \sqrt{2})=\frac{14}{15} . \end{aligned} $

9. If $2 \tan ^{-1}(\cos \theta)=\tan ^{-1}(2 cosec \theta)$, then show that $\theta=\frac{\pi}{4}$

Show Answer

Solution

$2 \tan ^{-1}(\cos \theta)=\tan ^{-1}(2 cosec \theta)$

$ \begin{aligned} & \Rightarrow \tan ^{-1}(\frac{2 \cos \theta}{1-\cos ^{2} \theta})=\tan ^{-1}(2 cosec \theta) \\ & \Rightarrow \quad[\because 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}] \\ & \Rightarrow \quad \frac{2 \cos \theta}{1-\cos ^{2} \theta}=2 cosec \theta \Rightarrow \frac{2 \cos \theta}{\sin ^{2} \theta}=\frac{2}{\sin \theta} \\ & \Rightarrow \quad \cos \theta \sin \theta-\sin ^{2} \theta=0 \Rightarrow \sin \theta(\cos \theta-\sin \theta)=0 \\ & \Rightarrow \quad \sin \theta=0 \text{ or } \quad \cos \theta-\sin \theta=0 \\ & \Rightarrow \quad \sin \theta=0 \quad \text{ or } \quad 1-\tan \theta=0 \\ & \Rightarrow \quad \theta=0 \text{ or } \quad \tan \theta=1 \\ & \Rightarrow \quad \theta=0^{\circ} \text{ or } \quad \theta=\frac{\pi}{4} \text{ Hence proved. } \end{aligned} $

10. Show that: $\cos (2 \tan ^{-1} \frac{1}{7})=\sin (4 \tan ^{-1} \frac{1}{3})$

Show Answer

Solution

L.H.S. $\cos (2 \tan ^{-1} \frac{1}{7})$

$ \begin{aligned} & =\cos [\cos ^{-1} \frac{1-\frac{1}{49}}{1+\frac{1}{49}}] \quad[\because 2 \tan ^{-1} x=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}] \\ & =\cos [\cos ^{-1} \frac{48}{50}]=\cos [\cos ^{-1} \frac{24}{25}]=\frac{24}{25} \end{aligned} $

R.H.S. $\sin [4 \tan ^{-1} \frac{1}{3}]$

$ \begin{aligned} & =\sin [2 \tan ^{-1}(\frac{2 \times \frac{1}{3}}{1-\frac{1}{9}})][\because 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}] \\ & =\sin [2 \tan ^{-1}(\frac{\frac{2}{3}}{\frac{3}{9}})]=\sin [2 \tan ^{-1} \frac{3}{4}] \\ & =\sin [\sin ^{-1} \frac{2 \times \frac{3}{4}}{1+\frac{9}{16}}][\because 2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}] \\ & =\sin [\sin ^{-1} \frac{24}{25}] \Rightarrow \frac{24}{25} \end{aligned} $

L.H.S. = R.H.S. Hence proved.

11. Solve the following equation: $\cos (\tan ^{-1} x)=\sin (\cot ^{-1} \frac{3}{4})$

Show Answer

Solution

Given that $\cos (\tan ^{-1} x)=\sin (\cot ^{-1} \frac{3}{4})$

$ \begin{aligned} \Rightarrow \cos [\cos ^{-1} \frac{1}{\sqrt{1+x^{2}}}]=\sin [\sin ^{-1} \frac{4}{5}] \\ { \begin{bmatrix} \because \tan ^{-1} x=\cos ^{-1}(\frac{1}{\sqrt{1+x^{2}}}) \\ \cot ^{-1} x=\sin ^{-1}(\frac{1}{\sqrt{1+x^{2}}}) \end{bmatrix} } \end{aligned} $

$ \Rightarrow \quad \frac{1}{\sqrt{1+x^{2}}}=\frac{4}{5} $

Squaring both sides we get,

$ \begin{aligned} & \frac{1}{1+x^{2}}=\frac{16}{25} \Rightarrow 1+x^{2}=\frac{25}{16} \\ & \Rightarrow \quad x^{2}=\frac{25}{16}-1=\frac{9}{16} \Rightarrow x= \pm \frac{3}{4} \\ & \text{ Hence, } \quad x=\frac{-3}{4}, \frac{3}{4} \text{. } \end{aligned} $

Long Answer Type Questions

12. Prove that: $\tan ^{-1}[\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}]=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^{2}$

Show Answer

Solution

L.H.S. $\tan ^{-1}[\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}]$

Put $x^{2}=\cos \theta \quad \therefore \theta=\cos ^{-1} x^{2}$

$\Rightarrow \tan ^{-1}[\frac{\sqrt{1+\cos \theta}+\sqrt{1-\cos \theta}}{\sqrt{1+\cos \theta}-\sqrt{1-\cos \theta}}]$

$\Rightarrow \tan ^{-1}[\frac{\sqrt{2 \cos ^{2} \theta / 2}+\sqrt{2 \sin ^{2} \theta / 2}}{\sqrt{2 \cos ^{2} \theta / 2}-\sqrt{2 \sin ^{2} \theta / 2}}] \begin{cases} \because 1+\cos \theta=2 \cos ^{2} \theta / 2 \\ 1-\cos \theta=2 \sin ^{2} \theta / 2 \end{cases} $

$\Rightarrow \tan ^{-1}[\frac{\cos \theta / 2+\sin \theta / 2}{\cos \theta / 2-\sin \theta / 2}]$

$\Rightarrow \tan ^{-1}[\frac{1+\tan \theta / 2}{1-\tan \theta / 2}] \quad$ [Dividing the Nr. and Den. by $\cos \theta / 2$ ]

$\Rightarrow \tan [\tan (\frac{\pi}{4} \quad \frac{\theta}{2})] \quad[\because \frac{1+\tan \theta}{1-\tan \theta}=\tan (\frac{\pi}{4}+\theta)]$

$\Rightarrow \frac{\pi}{4}+\frac{\theta}{2} \Rightarrow \frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^{2}$ R.H.S. $\quad$ [Putting $\theta=\cos ^{-1} x^{2}$ ]

Hence proved.

13. Find the simplified form of $\cos ^{-1}(\frac{3}{5} \cos x+\frac{4}{5} \sin x)$, where $x \in[\frac{-3 \pi}{4}, \frac{\pi}{4}]$

Show Answer

Solution

Given that $\cos ^{-1}(\frac{3}{5} \cos x+\frac{4}{5} \sin x)$

Put $\quad \frac{3}{5}=\cos y$

$\therefore \quad \sqrt{1-\cos ^{2} y}=\sin y \Rightarrow \sqrt{1-\frac{9}{25}}=\sin y \Rightarrow \frac{4}{5}=\sin y$

$\therefore \cos ^{-1}[\frac{3}{5} \cos x+\frac{4}{5} \sin x]=\cos ^{-1}[\cos y \cos x+\sin y \sin x]$

$=\cos ^{-1}[\cos (y-x)]=y-x$

$=\tan ^{-1} \frac{4}{3}-x$ $\frac{8}{7}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{77}{85}$

14. Prove that: $\sin ^{-1} \frac{8}{17}+\sin ^{-}$

Show Answer

Solution

L.H.S. $\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}$

$ \begin{aligned} & \text{ Using } \sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}[x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}] \\ & \begin{aligned} \sin ^{-1} \frac{8}{17}+ & \sin ^{-1} \frac{3}{5}=\sin ^{-1}[\frac{8}{17} \cdot \sqrt{1-(\frac{3}{5})^{2}}+\frac{3}{5} \cdot \sqrt{1-(\frac{8}{17})^{2}}] \\ & =\sin ^{-1}[\frac{8}{17} \cdot \sqrt{1-\frac{9}{25}}+\frac{3}{5} \cdot \sqrt{1-\frac{64}{289}}] \\ & =\sin ^{-1}[\frac{8}{17} \cdot \sqrt{\frac{16}{25}}+\frac{3}{5} \cdot \sqrt{\frac{225}{289}}] \\ & =\sin ^{-1}[\frac{8}{17} \cdot \frac{4}{5}+\frac{3}{5} \cdot \frac{15}{17}]=\sin ^{-1}[\frac{32}{85}+\frac{45}{85}] \\ & =\sin ^{-1} \frac{77}{85} \text{ R.H.S. Hence proved. } \end{aligned} \end{aligned} $

15. Show that: $\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}=\tan ^{-1} \frac{63}{16}$

Show Answer

Solution

Let $\sin ^{-1} \frac{5}{13}=x \quad \Rightarrow \quad \sin x=\frac{5}{13}$

$\Rightarrow \quad \tan x=\frac{5}{12}$

Let $\cos ^{-1} \frac{3}{5}=y \quad \Rightarrow \quad \cos y=\frac{3}{5}$

$\Rightarrow \quad \tan y=\frac{4}{3}$

Now $\quad \tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}$

$\Rightarrow \quad \tan (x+y)=\frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12} \times \frac{4}{3}}=\frac{\frac{15+48}{36}}{\frac{36-20}{36}}=\frac{63}{16}$

$\Rightarrow \quad x+y=\tan ^{-1} \frac{63}{16}$

$\therefore \sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}=\tan ^{-1} \frac{63}{16}$ Hence proved.

16. Prove that: $\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\sin ^{-1} \frac{1}{\sqrt{5}}$

Show Answer

Solution

$\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\tan ^{-1}[\frac{\frac{1}{4}+\frac{2}{9}}{1-\frac{1}{4} \times \frac{2}{9}}]$

$[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}(\frac{x+y}{1-x y})]$

$\Rightarrow \tan ^{-1}[\frac{\frac{9+8}{36}}{\frac{36-2}{36}}]=\tan ^{-1}[\frac{17}{34}]$

Let $\quad \tan ^{-1}[\frac{17}{34}]=x$

$\therefore \quad \tan x=\frac{17}{34}=\frac{1}{2}$

$ \begin{aligned} \sin x & =\frac{1}{\sqrt{5}} \\ \therefore \quad \tan ^{-1} \frac{1}{2} & =\sin ^{-1} \frac{1}{\sqrt{5}} \text{ R.H.S. } \end{aligned} $

Hence, $\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\sin ^{-1} \frac{1}{\sqrt{5}}$

17. Find the value of $4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}$

Show Answer

Solution

$4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}$

$\Rightarrow 2 \cdot(2 \tan ^{-1} \frac{1}{5})-\tan ^{-1} \frac{1}{239}$

$\Rightarrow 2[\tan ^{-1} \frac{2 \times \frac{1}{5}}{1-\frac{1}{25}}]-\tan ^{-1} \frac{1}{239} \quad[2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}]$

$\Rightarrow 2 \tan ^{-1} \frac{5}{12}-\tan ^{-1} \frac{1}{239} \Rightarrow \tan ^{-1}(\frac{2 \times \frac{5}{12}}{1-\frac{25}{144}})-\tan ^{-1}(\frac{1}{239})$

$\Rightarrow \tan ^{-1}(\frac{120}{119})-\tan ^{-1}(\frac{1}{239})$

$\Rightarrow \tan ^{-1}[\frac{\frac{120}{119}-\frac{1}{239}}{1+\frac{120}{119} \times \frac{1}{239}}][\because \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}]$

$\Rightarrow \tan ^{-1}[\frac{120 \times 239-119}{119 \times 239+120}] \Rightarrow \tan ^{-1}[\frac{28680-119}{28441+120}]$

$\Rightarrow \tan ^{-1}[\frac{28561}{28561}]=\tan ^{-1}(1)=\frac{\pi}{4}$

18. Show that $\tan (\frac{1}{2} \sin ^{-1} \frac{3}{4})=\frac{4-\sqrt{7}}{3}$ and justify why the other value $\frac{4+\sqrt{7}}{3}$ is ignored?

Show Answer

Solution

To prove that $\tan (\frac{1}{2} \sin ^{-1} \frac{3}{4})=\frac{4-\sqrt{7}}{3}$ L.H.S. Let $\frac{1}{2} \sin ^{-1} \frac{3}{4}=\tan ^{-1} \theta$ $[\therefore \tan (\tan ^{-1} \theta)=\theta]$

$ \begin{aligned} & \Rightarrow \quad \sin ^{-1} \frac{3}{4}=2 \tan ^{-1} \theta \Rightarrow \sin ^{-1} \frac{3}{4}=\sin ^{-1}(\frac{2 \theta}{1+\theta^{2}}) \\ & {[\because 2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}]} \\ & \Rightarrow \quad \frac{2 \theta}{1+\theta^{2}}=\frac{3}{4} \Rightarrow 3+3 \theta^{2}=8 \theta \\ & \Rightarrow \quad 3 \theta^{2}-8 \theta+3=0 \\ & \Rightarrow \quad \theta=\frac{-(-8) \pm \sqrt{(-8)^{2}-4 \times 3 \times 3}}{2 \times 3} \\ & =\frac{8 \pm \sqrt{64-36}}{6}=\frac{8 \pm \sqrt{28}}{6}=\frac{8 \pm 2 \sqrt{7}}{6}=\frac{2(4 \pm \sqrt{7})}{6} \\ & \Rightarrow \quad \theta=\frac{4 \pm \sqrt{7}}{3} \\ & \therefore \quad \theta=\frac{4+\sqrt{7}}{3} \text{ or } \frac{4-\sqrt{7}}{3} \\ & \theta=\frac{4+\sqrt{7}}{3} \text{ is ignored. } \\ & \text{ Because } \frac{-\pi}{2} \leq \sin ^{-1} \frac{3}{4} \leq \frac{\pi}{2} \\ & \Rightarrow \frac{-\pi}{4} \leq \frac{1}{2} \sin ^{-1} \frac{3}{4} \leq \frac{\pi}{4} \\ & \Rightarrow \tan (\frac{-\pi}{4}) \leq \tan (\frac{1}{2} \sin ^{-1} \frac{3}{4}) \leq \tan (\frac{\pi}{4}) \\ & \Rightarrow-1 \leq \tan (\frac{1}{2} \sin ^{-1} \frac{3}{4}) \leq 1 \end{aligned} $

19. If $a_1, a_2, a_3, \ldots, a_n$ is an arithmetic progression with common difference $d$, then evaluate the following expression

$ \begin{matrix} \tan [\tan ^{-1}(\frac{d}{1+a_1 a_2})+\tan ^{-1}(\frac{d}{1+a_2 a_3})+\tan ^{-1}(\frac{d}{1+a_3 a_4})+\ldots. \\ .\ldots+\tan ^{-1}(\frac{d}{1+a _{n-1} \cdot a_n})] \end{matrix} $

Show Answer

Solution

If $a_1, a_2, a_3, \ldots, a_n$ are the terms of an arithmetic progression $\therefore d=a_2-a_1=a_3-a_2=a_4-a_3 \ldots$

$ \begin{matrix} \therefore \tan [\tan ^{-1}(\frac{a_2-a_1}{1+a_1 a_2})+\tan ^{-1}(\frac{a_3-a_2}{1+a_2 a_3})+\tan ^{-1}(\frac{a_4-a_3}{1+a_3 a_4})+\ldots. \\ .\ldots+\tan ^{-1}(\frac{a_n-a _{n-1}}{1+a _{n-1} \cdot a_n})] \\ \Rightarrow \tan [(\tan ^{-1} a_2-\tan ^{-1} a_1)+(\tan ^{-1} a_3-\tan ^{-1} a_2)+(\tan ^{-1} a_4-\tan ^{-1} a_3). \\ .+\ldots+(\tan ^{-1} a_n-\tan ^{-1} a _{n-1})] \\ \Rightarrow \tan [\tan ^{-1} a_2-\tan ^{-1} a_1+\tan ^{-1} a_3-\tan ^{-1} a_2+\tan ^{-1} a_4-\tan ^{-1} a_3. \\ \quad[\because \tan ^{-1} \frac{x-y}{1+x y}=\tan ^{-1} x-\tan ^{-1} y] \\ \Rightarrow \tan [\tan ^{-1} a_n-\tan ^{-1} a_1] \quad \quad[\because \tan (\tan ^{-1} x)=x] \\ \Rightarrow \tan [\tan ^{-1}(\frac{a_n-a_1}{1+a_1 a_n})] \Rightarrow \frac{a_n-a_1}{1+a_1 a_n \quad} \end{matrix} $

Objective Type Questions

20. Which of the following is the principal value branch of $\cos ^{-1} x$ ?

(a) $[\frac{-\pi}{2}, \frac{\pi}{2}]$

(b) $(0, \pi)$

(c) $[0, \pi]$

(d) $(0, \pi)-{\frac{\pi}{2}}$

Show Answer

Solution

Principal value branch of $\cos ^{-1} x$ is $[0, \pi]$. Hence the correct answer is (c).

21. Which of the following is the principal value branch of $cosec^{-1} x$ ?

(a) $(\frac{-\pi}{2}, \frac{\pi}{2})$

(b) $[0, \pi]-{\frac{\pi}{2}}$

(c) $[\frac{-\pi}{2}, \frac{\pi}{2}]$

(d) $[\frac{-\pi}{2}, \frac{\pi}{2}]-{0}$

Show Answer

Solution

Principal value branch of $cosec^{-1} x$ is $[\frac{-\pi}{2}, \frac{\pi}{2}]-{0}$ as $cosec^{-1}(0)=\infty$ (not defined).

Hence, the correct answer is (d).

22. If $3 \tan ^{-1} x+\cot ^{-1} x=\pi$, then $x$ equals

(a) 0

(b) 1

(c) -1

(d) $\frac{1}{2}$

Show Answer

Solution

Given that $3 \tan ^{-1} x+\cot ^{-1} x=\pi$

$\Rightarrow 2 \tan ^{-1} x+\tan ^{-1} x+\cot ^{-1} x=\pi$

$\Rightarrow 2 \tan ^{-1} x+\frac{\pi}{2}=\pi$

$[\because \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}]$

$\Rightarrow \quad 2 \tan ^{-1} x=\pi-\frac{\pi}{2} \quad \Rightarrow 2 \tan ^{-1} x=\frac{\pi}{2}$

$\Rightarrow \quad \tan ^{-1} x=\frac{\pi}{4} \quad \Rightarrow \tan ^{-1} x=\tan ^{-1}(1)$

$\therefore \quad x=1$

Hence, the correct answer is $(b)$.

23. The value of $\sin ^{-1}[\cos (\frac{33 \pi}{5})]$ is

(a) $\frac{3 \pi}{5}$

(b) $\frac{-7 \pi}{5}$

(c) $\frac{\pi}{10}$

(d) $\frac{-\pi}{10}$

Show Answer

Solution

$\sin ^{-1}[\cos (\frac{33 \pi}{5})]=\sin ^{-1}[\cos (6 \pi+\frac{3 \pi}{5})]$

$ \begin{aligned} & =\sin ^{-1}[\cos \frac{3 \pi}{5}] \quad[\because \cos (2 n \pi+x)=\cos x] \\ & =\sin ^{-1}[\cos (\frac{\pi}{2}+\frac{\pi}{10})] \\ & =\sin ^{-1}[-\sin (\frac{\pi}{10})][\because \cos (\frac{\pi}{2}+\theta)=-\sin \theta] \\ & =\sin ^{-1}[\sin (\frac{-\pi}{10})]=\frac{-\pi}{10} \end{aligned} $

Hence, the correct answer is $(d)$.

24. The domain of the function $\cos ^{-1}(2 x-1)$ is

(a) $[0,1]$

(b) $[-1,1]$

(c) $(-1,1)$

(d) $[0, \pi]$

Show Answer

Solution

The given function is $\cos ^{-1}(2 x-1)$

Let

$ \begin{aligned} f(x) & =\cos ^{-1}(2 x-1) \\ -1 & \leq 2 x-1 \leq 1 \Rightarrow-1+1 \leq 2 x \leq 1+1 \\ 0 & \leq 2 x \leq 2 \quad \Rightarrow 0 \leq x \leq 1 \end{aligned} $

$\therefore$ domain of the given function is $[0,1]$.

Hence, the correct answer is (a)

25. The domain of the function defined by $f(x)=\sin ^{-1} \sqrt{x-1}$ is

(a) $[1,2]$

(b) $[-1,1]$

(c) $[0,1]$

(d) None of these

Show Answer

Solution

Let

$ f(x)=\sin ^{-1} \sqrt{x-1} $

$\because \sqrt{x-1} \geq 0$ and $-1 \leq \sqrt{x-1} \leq 1$

$ \Rightarrow 0 \leq x-1 \leq 1 \Rightarrow 1 \leq x \leq 2 \Rightarrow x \in[1,2] $

Hence, the correct answer is (a).

26. If $\cos [\sin ^{-1} \frac{2}{5}+\cos ^{-1} x]=0$, then $x$ is equal to

(a) $\frac{1}{5}$

(b) $\frac{2}{5}$

(c) 0

(d) 1

Show Answer

Solution

Given that $\cos [\sin ^{-1} \frac{2}{5}+\cos ^{-1} x]=0$

$ \begin{matrix} \Rightarrow \sin ^{-1} \frac{2}{5}+\cos ^{-1} x =\cos ^{-1}(0) \\ \Rightarrow \sin ^{-1} \frac{2}{5}+\cos ^{-1} x =\frac{\pi}{2} \Rightarrow \sin ^{-1} \frac{2}{5}=\frac{\pi}{2}-\cos ^{-1} x \\ \Rightarrow \sin ^{-1} \frac{2}{5} =\sin ^{-1} x[\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}] \\ \Rightarrow x =\frac{2}{5} \end{matrix} $

Hence, the correct answer is (b).

27. The value of $\sin [2 \tan ^{-1}(0.75)]$ is equal to

(a) 0.75

(b) 1.5

(c) 0.96

(d) $\sin 1.5$

Show Answer

Solution

Given that $\sin [2 \tan ^{-1}(0.75)]$

$ \begin{aligned} & =\sin [2 \tan ^{-1} \frac{3}{4}] \\ & =\sin [\sin ^{-1} \frac{2 \times \frac{3}{4}}{1+\frac{9}{16}}][\because 2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}] \\ & =\sin [\sin ^{-1} \frac{\frac{3}{2}}{\frac{25}{16}}]=\sin [\sin ^{-1} \frac{24}{25}] \\ & =\sin [\sin ^{-1}(0.96)] \end{aligned} $

$ =0.96 $

Hence, the correct answer is (c).

28. The value of $\cos ^{-1}(\cos \frac{3 \pi}{2})$ is equal to

(a) $\frac{\pi}{2}$

(b) $\frac{3 \pi}{2}$

(c) $\frac{5 \pi}{2}$

(d) $\frac{7 \pi}{2}$

Show Answer

Solution

$ \cos ^{-1}(\cos \frac{\pi}{2}) \neq \frac{3 \pi}{2} \quad \because \frac{3 \pi}{2} \notin[0, \pi] $

$\Rightarrow \cos ^{-1}[\cos (\pi+\frac{\pi}{2})] \Rightarrow \cos ^{-1}[-\cos \frac{\pi}{2}] \Rightarrow \cos ^{-1}[0]=\frac{\pi}{2}$

Hence, the correct answer is (a).

29. The value of expression $2 \sec ^{-2} 2+\sin ^{-1}(\frac{1}{2})$ is

(a) $\frac{\pi}{6}$

(b) $\frac{5 \pi}{6}$

(c) $\frac{7 \pi}{6}$

(d) 1

Show Answer

Solution

$2 \sec ^{-1} 2+\sin ^{-1} \frac{1}{2}=2 \sec ^{-1}(\sec \frac{\pi}{3})+\sin ^{-1}(\sin \frac{\pi}{6})$

$ =2 \cdot \frac{\pi}{3}+\frac{\pi}{6}=\frac{2 \pi}{3}+\frac{\pi}{6}=\frac{5 \pi}{6} $

Hence, the correct answer is $(b)$.

30. If $\tan ^{-1} x+\tan ^{-1} y=\frac{4 \pi}{5}$, then $\cot ^{-1} x+\cot ^{-1} y$ equals

(a) $\frac{\pi}{5}$

(b) $\frac{2 \pi}{5}$

(c) $\frac{3 \pi}{5}$

(d) $\pi$

Show Answer

Solution

Given that $\tan ^{-1} x+\tan ^{-1} y=\frac{4 \pi}{5}$

$ \begin{matrix} \Rightarrow & \frac{\pi}{2}-\cot ^{-1} x+\frac{\pi}{2}-\cot ^{-1} y=\frac{4 \pi}{5} \quad[\because \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}] \\ \Rightarrow & \pi-(\cot ^{-1} x+\cot ^{-1} y)=\frac{4 \pi}{5} \\ \Rightarrow & \quad \cot ^{-1} x+\cot ^{-1} y=\pi-\frac{4 \pi}{5} \\ \Rightarrow & \quad \cot ^{-1} x+\cot ^{-1} y=\frac{\pi}{5} \end{matrix} $

Hence, the correct answer is (a).

31. If $\sin ^{-1}(\frac{2 a}{1+a^{2}})+\cos ^{-1}(\frac{1-a^{2}}{1+a^{2}})=\tan ^{-1}(\frac{2 x}{1-x^{2}})$, where $a, x \in] 0,1$, then the value of $x$ is

(a) 0

(b) $\frac{a}{2}$

(c) $a$

(d) $\frac{2 a}{1-a^{2}}$

Show Answer

Solution

$\sin ^{-1}(\frac{2 a}{1+a^{2}})+\cos ^{-1}(\frac{1-a^{2}}{1+a^{2}})=\tan ^{-1}(\frac{2 x}{1-x^{2}})$

$ \Rightarrow 2 \tan ^{-1} a+2 \tan ^{-1} a=2 \tan ^{-1} x $

$[\because 2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}=\tan ^{-1} \frac{2 x}{1-x^{2}}]$

$\Rightarrow \quad 4 \tan ^{-1} a=2 \tan ^{-1} x \Rightarrow 2 \tan ^{-1} a=\tan ^{-1} x$

Hence, the correct answer is (d).

32. The value of $\cot [\cos ^{-1}(\frac{7}{25})]$ i

(a) $\frac{25}{24}$

(b) $\frac{25}{7}$

(c) $\frac{24}{25}$

(d) $\frac{7}{24}$

Show Answer

Solution

We have, $\cot [\cos ^{-1}(\frac{7}{25})]$

Let $\quad \cos ^{-1} \frac{7}{25}=\theta$

$\therefore \quad \cos \theta=\frac{7}{25} \Rightarrow \cot \theta=\frac{7}{24}$

$\therefore \cot [\cos ^{-1}(\frac{7}{25})]=\cot [\cot ^{-1}(\frac{7}{24})]=\frac{}{24}$

Hence, the correct answer is $(d)$.

33. The value of expression $\tan [\frac{1}{2} \cos ^{-1} \frac{2}{\sqrt{5}}]$ is

(a) $2+\sqrt{5}$

(b) $\sqrt{5}-2$

(c) $\frac{\sqrt{5}+2}{2}$

(d) $5+\sqrt{2}$

Show Answer

Solution

We have, $\tan [\frac{1}{2} \cos ^{-1} \frac{2}{\sqrt{5}}]$

$ \begin{aligned} & \text{ Let } \\ & \theta=\frac{1}{2} \cos ^{-1} \frac{2}{\sqrt{5}} \\ & \Rightarrow \quad 2 \theta=\cos ^{-1} \frac{2}{\sqrt{5}} \Rightarrow \cos 2 \theta=\frac{2}{\sqrt{5}} \\ & \Rightarrow \quad \frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{2}{\sqrt{5}} \quad[\because \cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}] \\ & \Rightarrow \quad 2+2 \tan ^{2} \theta=\sqrt{5}-\sqrt{5} \tan ^{2} \theta \\ & \Rightarrow \sqrt{5} \tan ^{2} \theta+2 \tan ^{2} \theta=\sqrt{5}-2 \Rightarrow(\sqrt{5}+2) \tan ^{2} \theta=\sqrt{5}-2 \end{aligned} $

$ \begin{matrix} \Rightarrow & \tan ^{2} \theta=\frac{\sqrt{5}-2}{\sqrt{5}+2} \\ \Rightarrow & \tan ^{2} \theta=\frac{(\sqrt{5}-2)(\sqrt{5}-2)}{(\sqrt{5}+2)(\sqrt{5}-2)} \Rightarrow \tan ^{2} \theta=\frac{(\sqrt{5}-2)^{2}}{5-4} \\ \Rightarrow & \tan \theta= \pm(\sqrt{5}-2) \\ \Rightarrow \quad & \tan \theta=\sqrt{5}-2,[-(\sqrt{5}-2) \text{ is not required }] \end{matrix} $

Hence, the correct answer is $(b)$.

34. If $|x| \leq 1$, then $2 \tan ^{-1} x+\sin ^{-1}(\frac{2 x}{1+x^{2}})$ is equal to

(a) $4 \tan ^{-1} x$

(b) 0

(c) $\frac{\pi}{2}$

(d) $\pi$

Show Answer

Solution

Here, we have $2 \tan ^{-1} x+\sin ^{-1}(\frac{2 x}{1+x^{2}})$

$ \begin{aligned} & =2 \tan ^{-1} x+2 \tan ^{-1} x \quad[\because 2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^{2}}] \\ & =4 \tan ^{-1} x \end{aligned} $

Hence, the correct answer is $(a)$.

35. If $\cos ^{-1} \alpha+\cos ^{-1} \beta+\cos ^{-1} \gamma=3 \pi$, then $\alpha(\beta+\gamma)+\beta(\gamma+\alpha)+\gamma(\alpha+\beta)$ equals

(a) 0

(b) 1

(c) 6

(d) 12

Show Answer

Solution

We have $\cos ^{-1} \alpha+\cos ^{-1} \beta+\cos ^{-1} \gamma=3 \pi$

$ \begin{aligned} & \Rightarrow \quad \cos ^{-1} \alpha+\cos ^{-1} \beta+\cos ^{-1} \gamma=\pi+\pi+\pi \\ & \Rightarrow \quad \cos ^{-1} \alpha=\pi, \cos ^{-1} \beta=\pi \text{ and } \cos ^{-1} \gamma=\pi \\ & \Rightarrow \quad \alpha=\cos \pi, \beta=\cos \pi \text{ and } \gamma=\cos \pi \\ & \therefore \quad \alpha=-1, \beta=-1 \text{ and } \gamma=-1 \\ & \text{ Which gives } \alpha=\beta=\gamma=-1 \\ & \text{ So } \quad \alpha(\beta+\gamma)+\beta(\gamma+\alpha)+\gamma(\alpha+\beta) \\ & \Rightarrow \quad(-1)(-1-1)+(-1)(-1-1)+(-1)(-1-1) \\ & \Rightarrow \quad(-1)(-2)+(-1)(-2)+(-1)(-2) \Rightarrow 2+2+2 \Rightarrow 6 \end{aligned} $

Hence, the correct answer is (c).

36. The number of real solutions of the equation

$ \sqrt{1+\cos 2 x}=\sqrt{2} \cos ^{-1}(\cos x) \text{ in }[\frac{\pi}{2}, \pi] \text{ is } $

(a) 0

(b) 1

(c) 2

(d) infinite

Show Answer

Solution

We have $\sqrt{1+\cos 2 x}=\sqrt{2} \cos ^{-1}(\cos x)$

$ \begin{matrix} \Rightarrow & \sqrt{2 \cos ^{2} x}=\sqrt{2} x \\ \Rightarrow & \sqrt{2} \cos x & =\sqrt{2} x \Rightarrow \cos x=x \end{matrix} $

Which does not satisfy for any value of $x$.

Hence, the correct answer is $(d)$.

37. If $\cos ^{-1} x>\sin ^{-1} x$, then

(a) $\frac{1}{\sqrt{2}}<x \leq 1$

(c) $-1 \leq x<\frac{1}{\sqrt{2}}$

(b) $0 \leq x<\frac{1}{\sqrt{2}}$

(d) $x>0$

Show Answer

Solution

Here, given that $\cos ^{-1} x>\sin ^{-1} x$

$ \begin{matrix} \Rightarrow & \sin [\cos ^{-1} x]>x \\ \Rightarrow & \sin [\sin ^{-1} \sqrt{1-x^{2}}]>x \Rightarrow \sqrt{1-x^{2}}>x \\ \Rightarrow & x<\sqrt{1-x^{2}} \Rightarrow x^{2}<1-x^{2} \Rightarrow 2 x^{2}<1 \\ \Rightarrow & x^{2}<\frac{1}{2} \Rightarrow x< \pm \frac{1}{\sqrt{2}} \end{matrix} $

We know that $-1 \leq x \leq 1$

So $-1 \leq x<\frac{1}{\sqrt{2}}$.

Hence, the correct answer is (c).

Fillers

38. The principal value of $\cos ^{-1}(-\frac{1}{2})$ is ……

Show Answer

Solution

Let $\cos ^{-1}(-\frac{1}{2})=x \quad \Rightarrow \quad \cos x=-\frac{1}{2}$

$ \begin{aligned} & \Rightarrow & \cos x & =\cos (-\frac{\pi}{3}) \Rightarrow \cos x=\cos (\pi-\frac{\pi}{3})=\cos \frac{2 \pi}{3} \\ & \therefore & x & =\frac{2 \pi}{3} \in[0, \pi] \end{aligned} $

Hence, Principal value of $\cos ^{-1}(-\frac{1}{2})=\frac{2 \pi}{3}$.

39. The value of $\sin ^{-1}(\sin \frac{3 \pi}{5})$ is ……

Show Answer

Solution

$\quad \sin ^{-1}(\sin \frac{3 \pi}{5}) \neq \frac{3 \pi}{5}$ as $\frac{3 \pi}{5} \notin[\frac{-\pi}{2}, \frac{\pi}{2}]$

So $\sin ^{-1}(\sin \frac{3 \pi}{5})=\sin ^{-1} \sin (\pi-\frac{2 \pi}{5})$

$ =\sin ^{-1} \sin (\frac{2 \pi}{5})=\frac{2 \pi}{5} \in[\frac{-\pi}{2}, \frac{\pi}{2}] $

Hence, the value of $\sin ^{-1}(\sin \frac{3 \pi}{5})=\frac{2 \pi}{5}$

40. If $\cos (\tan ^{-1} x+\cot ^{-1} \sqrt{3})=0$, then value of $x$ is ……

Show Answer

Solution

Given that

$ \begin{aligned} & \cos [\tan ^{-1} x+\cot ^{-1} \sqrt{3}]=0 \\ \Rightarrow & \tan ^{-1} x+\cot ^{-1} \sqrt{3}=\cos ^{-1}(0) \\ \Rightarrow & \tan ^{-1} x+\cot ^{-1} \sqrt{3}=\frac{\pi}{2} \\ \Rightarrow & \tan ^{-1} x=\frac{\pi}{2}-\cot ^{-1} \sqrt{3} \\ \Rightarrow & \tan ^{-1} x=\tan ^{-1} \sqrt{3} \Rightarrow x=\sqrt{3} \end{aligned} \quad[\because \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}] $

Hence, the value of $x$ is $\sqrt{3}$.

41. The set of values of $\sec ^{-1}(\frac{1}{2})$ is ……

Show Answer

Solution

Let $\sec ^{-1}(\frac{1}{2})=x \Rightarrow \sec x=\frac{1}{2}$

Since, the domain of $\sec ^{-1} x$ is $R-{-1,1}$ and $\frac{1}{2} \notin R-{-1,1}$.

Hence, $\sec ^{-1}(\frac{1}{2})$ has no set of values.

42. The principal value of $\tan ^{-1} \sqrt{3}$ is ……

Show Answer

Solution

$\tan ^{-1} \sqrt{3}=\tan ^{-1}(\tan \frac{\pi}{3})=\frac{\pi}{3} \in(\frac{-\pi}{2}, \frac{\pi}{2})$

Hence the principal value of $\tan ^{-1} \sqrt{3}$ is $\frac{\pi}{3}$.

43. The value of $\cos ^{-1}(\cos \frac{14 \pi}{3})$ is ……

Show Answer

Solution

$\quad \cos ^{-1}(\cos \frac{14 \pi}{3})=\cos ^{-1}[\cos (5 \pi-\frac{\pi}{3})]$

$ \begin{aligned} & =\cos ^{-1}[\cos (\frac{-\pi}{3})]=\cos ^{-1}[\cos (\pi-\frac{\pi}{3})] \\ & =\cos ^{-1}[\cos \frac{2 \pi}{3}]=\frac{2 \pi}{3} \in[0, \pi] \end{aligned} $

Hence, the value of $\cos ^{-1}[\cos \frac{14 \pi}{3}]=\frac{2 \pi}{3}$.

44. The value of $\cos (\sin ^{-1} x+\cos ^{-1} x),|x| \leq 1$ is ……

Show Answer

Solution

$\cos [\sin ^{-1} x+\cos ^{-1} x]=\cos \frac{\pi}{2}=0 \quad[\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}]$ Hence, the value of $\cos (\sin ^{-1} x+\cos ^{-1} x)=0$.

45. The value of expression $\tan (\frac{\sin ^{-1} x+\cos ^{-1} x}{2})$, when $x=\frac{\sqrt{3}}{2}$ is ……

Show Answer

Solution

$\tan (\frac{\sin ^{-1} x+\cos ^{-1} x}{2})=\tan (\frac{\pi}{4})=1[\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}]$ Hence, the value of the given expression is 1 .

46. If $y=2 \tan ^{-1} x+\sin ^{-1}(\frac{2 x}{1+x^{2}})$ for all $x$, then …… $<y<\ldots \ldots$

Show Answer

Solution

$ y=2 \tan ^{-1} x+\sin ^{-1}(\frac{2 x}{1+x^{2}}) $

$\begin{matrix} \Rightarrow & y=2 \tan ^{-1} x+2 \tan ^{-1} x \\ \Rightarrow & y=4 \tan ^{-1} x\end{matrix} [\because \sin ^{-1}(\frac{2 x}{1+x^{2}})=2 \tan ^{-1} x]$

Now $\frac{-\pi}{2}<\tan ^{-1} x<\frac{\pi}{2}$

$\Rightarrow \quad-4 \times \frac{\pi}{2}<4 \tan ^{-1} x<4 \times \frac{\pi}{2} \Rightarrow-2 \pi<y<2 \pi$

Hence, the value of $y$ is $(-2 \pi, 2 \pi)$.

47. The result $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}(\frac{x-y}{1+x y})$ is true when value of $x y$ is ……

Show Answer

Solution

The given result is true when $x y>-1$.

48. The value of $\cot ^{-1}(-x)$ for all $x \in R$ in terms of $\cot ^{-1} x$ is ……

Show Answer

Solution

$\cot ^{-1}(-x)=\pi-\cot ^{-1} x, x \in R \quad[\because as^{-1}(-x)=\pi-\cot ^{-1} x]$

True/False

49. All trigonometric functions have inverse over their respective domains.

Show Answer

Solution

False.

We know that all inverse trigonometric functions are restricted over their domains.

50. The value of expression $(\cos ^{-1} x)^{2}$ is equal to $\sec ^{2} x$.

Show Answer

Solution

False.

We know that $\cos ^{-1} x=\sec ^{-1}(\frac{1}{x}) \neq \sec x$ So

$ (\cos ^{-1} x)^{2} \neq \sec ^{2} x $

51. The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.

Show Answer

Solution

True.

We know that all trigonometric functions are restricted over their domains to obtain their inverse functions.

52. The least numerical value, either positive or negative of angle $\theta$ is called principal value of the inverse trigonometric function.

Show Answer

Solution

True.

53. The graph of inverse trigonometric function can be obtained from the graph of their corresponding trigonometric function by interchanging $x$ and $y$ axes.

Show Answer

Solution

True.

We know that the domain and range are interchanged in the graph of inverse trigonometric functions to that of their corresponding trigonometric functions.

54. The minimum value of $n$ for which $\tan ^{-1} \frac{n}{\pi}>\frac{\pi}{4}, n \in N$ is valid is 5 .

Show Answer

Solution

False.

Given that $\tan ^{-1} \frac{n}{\pi}>\frac{\pi}{4}$

$ \begin{matrix} \Rightarrow & \frac{n}{\pi}>\tan \frac{\pi}{4} \Rightarrow \frac{n}{\pi}>1 \\ \Rightarrow & n>\pi \Rightarrow n>3.14 \end{matrix} $

Hence, the value of $n$ is 4 .

55. The principal value of $\sin ^{-1}[\cos (\sin ^{-1} \frac{1}{2})]$ is $\frac{\pi}{3}$.

Show Answer

Solution

True.

$ \begin{aligned} \sin ^{-1}[\cos (\sin ^{-1} \frac{1}{2})] & =\sin ^{-1}[\cos (\sin ^{-1} \sin \frac{\pi}{6})] \\ \sin ^{-1}[\cos \frac{\pi}{6}] & =\sin ^{-1}(\frac{\sqrt{3}}{2})=\sin ^{-1}(\sin \frac{\pi}{3})=\frac{\pi}{3} \end{aligned} $



Table of Contents