knowledge-route Maths10 Ch6


title: “Lata knowledge-route-Class10-Math1-2 Merged.Pdf(1)” type: “reveal” weight: 1

TRIGONOMETRY

TRIGONOMETRY

11.1 TRIGONOMETRY :

Trigonometry means, the science which deals with the measurement of triangles.

11.1 (a) Trigonometric Ratios :

A right angled triangle is shown in Figure. B Is of 90 Side opposite to B be called hypotenuse. There are two other angles i.e. A and C. It we consider C as θ, then opposite side to this angle is called perpendicular and side adjacent to θ is called base.

TRIGONOMETRY

(i) Six Trigonometry Ratio are :

sinθ= Perpenicular  Hypotenuse =PH=ABACcosecθ= Hypoteuse  Perpendicular =HP=ACABcosθ= Base  Hypotenuse =BH=BCACsecθ= Hypotenuse  Base =HB=ACBCtanθ= Perpendicular  Base =PB=ABBCcotθ= Base  Parpendicular =BP=BCAB

TRIGONOMETRY

(ii) Interrelationship is Basic Trigonometric Ratio :

tanθ=1cotθcotθ=1tanθcosθ=1secθsecθ=1cosθsinθ=1cosecθcosecθ=1sinθ

We also observe that

tanθ=sinθcosθcotθ=cosθsinθ

TRIGONOMETRY

11.1 (b) Trigonometric Table :

θ 0 300 450 600 900
Sin 0 12 12 32 1
Cos 1 32 12 12 0
Tan 0 13 1 3 Not
defined
Cot Not
defined
3 1 13 0
Sec 1 23 2 2 Not
defined
Cosec Not
defined
2 2 23 1

TRIGONOMETRY

11.1 (c) Trigonometric Identities :

(i) sin2θ+cos2θ=1

(A) sin2θ=1cos2θ

(B) cos2θ=1sin2θ

(ii) 1+tan2θ=sec2θ

(A) sec2θ1=tan2θ

(B) sec2θtan2θ=1

(C) tan2θsec2θ=1

(iii) 1+cot2θ=cosec2θ

(A) cosec2θ1=cot2θ

(B) cosec2θcot2θ=1

(C) cot2θcosec2θ=1

TRIGONOMETRY

11.1 (d) Trigonometric Ratio of Complementary Angles :

sin(90θ)=cosθ cos(90θ)=sinθ
tan(90θ)=cotθ cot(90θ)=tanθ
sec(90θ)=cosecθ cosec(90θ)=secθ

TRIGONOMETRY

ILLUSTRATIONS :

Ex. 1 In the given triangle AB=3cm and AC=5cm. Find all trigonometric ratios.

TRIGONOMETRY

Sol. Using Pythagoras theorem

AC2=AB2+BC252=32+p216=p2P=cm Here P=4cm,B=3cm,H=5cmsinθ=PH=45cosθ=BH=35tanθ=PB=43

TRIGONOMETRY

cotθ=BP=34secθ=HB=53cosecθ=HP=54

TRIGONOMETRY

Ex. 2 If tanθ=mn, then find sinθ.

TRIGONOMETRY

Sol. Let P=mα and B=nα

tanθ=PB=mnH2=P2+B2H2=m2α2+n2α2H=αm2+n2tanθ=PH=maam2+n2sinθ=mm2+n2

TRIGONOMETRY

Ex. 3 If cosecA=135 the prove than tan2Asing2A=sin4Asec2A.

TRIGONOMETRY

Sol. We hare coses A=135= Hypotenuse  Perpendicular 

So, we draw a right triangle ABC, right angled at C such that hypotenuse AB=13 units and perpendicular

BC=5 units

B Pythagoras theorem,

AB2=BC2+AC2(13)2=(5)2+AC2AC2=16925=144AC=144=12 units tanA=BCAC=512sinA=BCAB=513 and secA=ABAC=1312

TRIGONOMETRY

L.H.S. tan2ASin2A

=(512)2(513)2

=2514425169

=25(169144)144×169

=25×25144×169

TRIGONOMETRY

R.H.S. =sin4A×sec2A

=(513)4×(1312)2

=54×132134×122

=54132×122

=25×25144×169

So, L.H.S. = R.H.S.

Hence Proved.

TRIGONOMETRY

Ex. 4 In ABC, right angled at B.AC+AB=9cm. Determine the value of cotC,cosecC,secC.

TRIGONOMETRY

Sol. In ABC, we have (AC)2=(AB)2+BC2

(9AB)2=AB2+(3)2 [AC+AB=9cmAC=9AB]

(81+AB218AB=AB2+9.

7218AB=0

AB=7218=4cm.

TRIGONOMETRY

Now, AC+AB=9cm

AC=94=5cm

So, cotC=BCAB=34,cosecC=ACAB=54,secC=ACBC=53.

TRIGONOMETRY

Ex. 5 Given that cos(AB)=cosAcosB+sinB, find the value of cos15.

TRIGONOMETRY

Sol. Putting A=45 and B=30

We get cos(4530)=cos45cos30+sin45sin30

cos150.=12×32+12×12 cos15=3+122

TRIGONOMETRY

Ex. 6 A Rhombus of side of 10cm has two angles of 60 each. Find the length of diagonals and also find its area.

TRIGONOMETRY

Sol. Let ABCD be a rhombus of side 10cm and BAD=BCD=60. Diagonals of parallelogram bisect each other.

S,AO=OC and BO=OD

In right triangle AOB

sin30=OBABcos30=OAAB

12=OB10 32=OA10

OB=5cmOA=53

BD=2(OB)AC=2(OA)

BD=2(5)AC=2(53)

BD=10cmAC=103cm

TRIGONOMETRY

So, the length of diagonals AC=103cm&BD=10cm

Area of Rhombus =12×AC×BD

=12×103×10=503cm2.

TRIGONOMETRY

Ex. 7 Evaluate : sec2540cot236cosec2570tan2330+2sin238sec252sin245+23tan170tan60tan73

TRIGONOMETRY

Sol. sec2540cot2360cosec2570tan2330+2sin2380sec252sin245+23tan170tan600tan730

=sec2(90036)cot2360cosec(900330)tan2330+2sin2380sec2(90380)sin245+23tan(90730)tan730tan60

=cosec2360cot2360sec2330tan2330+2sin2380cosec2380(12)2+23cot730tan730×3

=11+2sin2380×1sin238012+23×1tan730×730×3[cosec2θcot2θ=1,sec2θtan2θ=1]

=1+212+2=512=92.

TRIGONOMETRY

Ex. 8 Prove that : cosec(65+θ)sec(25θ)tan(55θ)+cot(35+θ)=0

TRIGONOMETRY

Sol. cosec(65+θ)=cosec900(250θ)=sec(25θ) …(i)

cot(35+θ)=cot90(55θ)=tan(55θ)…(ii)

L.H.S. cosec(65+θ)sec(25θ)tan(55θ)+cot(35+θ)

=sec(25θ)sec(25θ)tan(55θ)+tan(55θ)

=0[u sin g(i)&(ii)] R.H.S.

TRIGONOMETRY

Ex. 9 Prove that : cotθtanθ=2cos2θ1sinθcosθ

TRIGONOMETRY

Sol. L.H.S. cotθtanθ

=cosθsinθsinθcosθ [cotθ=cosθsinθ,tanθ=sinθcosθ]

=cos2θsin2sinθcosθ=cos2θ(1cos2θ)sinθcosθ [sin2θ=1cos2θ]

=cos2θ1+cos2θsinθcosθ=2cos2θ1sinθcosθ R.H.S. Hence Proved.

TRIGONOMETRY

Ex. 10 Prove that: (cosesAsinA)(secAcosA)(tanA+cotA)=1.

TRIGONOMETRY

Sol. L.H.S. (cosecAsinA)(secAcosA)(tanA+cotA)

=(1sinAsinA)(1cosAcosA)(sinAcosA+cosAsinA)

=(1sin2AsinA)(1cos2AcosA)(sin2A+cos2AsinAcosA)

=(cos2AsinA)(sin2AcosA)(1sinAcosA) [sin2A+cos2A=1]

=1

R.H.S. Hence Proved

TRIGONOMETRY

Ex. 11 If sinθ+cosθ=m and secθ+cosecθ=n, then prove that n(m21)=2m.

TRIGONOMETRY

Sol. L.H.S. n(m21)

=(secθ+cosecθ)[(sinθ+cosθ)21]=(1cosθ+1sinθ)(sin2θ+cos2θ+2sinθcosθ1)=(cosθ+sinθsinθcosθ)(1+2sinθcosθ1)=(cosθ+sinθ)sinθcosθ(2sinθcosθ)

=2(sinθ+cosθ)=2mR.H.S. Hence Proved. 

TRIGONOMETRY

Ex. 12 If secθ=x+14x, then prove that secθ+tanθ=2x or 12x.

TRIGONOMETRY

Sol. secθ=x+14x …(i)

1+tan2θ=sec2θtan2θ=sec2θ1tan2θ=(x+14x)21tan2θ=x2+116x2+2×x×14x1tan2θ=x2+116x2+121tanθ=±(x14x)tan2θ=(x14x)2tanθ=±(x14x) So, tanθ=x14x(ii) or tanθ=(x14x)(iii)

TRIGONOMETRY

Adding equation (i) and (ii)

secθ+tanθ=x+14x+x14x

secθ+tanθ=2x

Adding equation (i) and (ii)

secθ+tanθ=x+14xx+14x=12x Hence, secθ+tanθ+2x or 12x.

Ex. 13 If θ is an acute angle and tanθ+cotθ=2 find the value of tan9θ+cot9θ

TRIGONOMETRY

Sol. We have, tanθ+cotθ=2

tanθ+1tanθ=2

tan2θ+1=2tanθ

(tanθ1)2=0

tanθ=1

tan9θ+cot9θ

=tan9450+cot9450

=(1)9+(1)9

TRIGONOMETRY

tan2θ+1tanθ=2

tan2θ2tanθ+1=0

tanθ1=0

tanθ=tan450 θ=450

=(tan45)9+(cot45)0

=2

TRIGONOMETRY

DAILY PRACTIVE PROBLEMS 11

OBJECTIVE DPP - 11.1

1. If α+β=π2 and α=13, then sinβ is

(A) 23

(B) 223

(C) 23

(D) 34

TRIGONOMETRY

Qus. 1
Ans. B

TRIGONOMETRY

2. If 5tanθ=4, then value of 5sinθ3cosθ5sinθ+2cosθ is

(A) 13

(B) 16

(C) 45

(D) 23

TRIGONOMETRY

Qus. 2
Ans. B

TRIGONOMETRY

3. If 7sinα=24cosα;0<α<π2, then value of 14tanα75cosα7secα is equal to

(A) 1

(B) 2

(C) 3

(D) 4

TRIGONOMETRY

Qus. 3
Ans. B

TRIGONOMETRY

4. Given 3β+5cosα;β=5, then the value of (3cosβ5sinβ)2 is equal to

(A) 9

(B) 95

(C) 13

(D) 19

TRIGONOMETRY

Qus. 4
Ans. A

TRIGONOMETRY

5. If tanθ=4, then (tanθsin3θcosθ+sinθcosθ) is equal to

(A) 0

(B) 22

(C) 2

(D) 1

TRIGONOMETRY

Qus. 5
Ans. D

TRIGONOMETRY

6. The value of tan5tan10tan1520 tan85, is

(A) 1

(B) 2

(C) 3

(D) None of these

TRIGONOMETRY

Qus. 6
Ans. A

TRIGONOMETRY

7. As x increases from 0 to π2 the value of cosx

(A) increases

(B) decreases

(C) remains constant

(D) increases, then decreases

TRIGONOMETRY

Qus. 7
Ans. B

TRIGONOMETRY

8. Find the value of x from the equation xsinπ6cos2π4=cot2π6secπ3tanπ4cosec2π4cosecπ6

(A) 4

(B) 6

(C) - 2

(D) 0

TRIGONOMETRY

Qus. 8
Ans. B

TRIGONOMETRY

9. The area of a triangle is 12sq.cm. Two sides are 6cm and 12cm. The included angle is

(A) cos1(13)

(B) cos1(16)

(C) sin1(16)

(D) sin1(13)

TRIGONOMETRY

Qus. 9
Ans. D

TRIGONOMETRY

10. If α+β=90 and α=2β then cos2α+sin2β equals to

(A) 12

(B) 0

(C) 1

(D) 2

TRIGONOMETRY

Qus. 10
Ans. A

TRIGONOMETRY

SUBJECTIVE DPP - 11.2

1. Evaluate : (A) sinθcosθsin(90θ)cos(90θ)+cosθsinθcos(90θ)sin(90θ)+sin227+sin263cos240+cos250

(B) cos10cos2cos3cos180

(C) sin(50+θ)cos(40θ)+tan10tan20tan70tan80tan89

(D) 23(cos430sin445)3(sin260sec245)+14cot2300

(E) cos220+cos270sec250cot240+2cosec2582cot58tan324tan130tan37tan45tan53tan77

TRIGONOMETRY

Qus. 1 Ans.
(A) 2
(B) 0
(C) 1
(D) 11324

TRIGONOMETRY

2. If cotθ=34, prove that secθcosecθsecθ+cosecθ=17.

TRIGONOMETRY

3. If A+B=90, prove that : tanAtanB+tanAcotBsinAsecBsin2Bcos2A=tanA

TRIGONOMETRY

4. If A,B,C are the interior angles of a ABC, show that :

(i) sinB+C2=cosA2 (ii) cosB+C2=sinA2

TRIGONOMETRY

Prove the following (Q, 5 to Q. 13)

5. tan2θsin2θ=tan2θsin2θ

TRIGONOMETRY

6. (sinθ+cosecθ)+(cosθ+secθ)2=7+tan2θ+cot2θ

[CBSE - 2008]

TRIGONOMETRY

7. tanθ1cotθ+cotθ1tanθ=secθcosecθ+1

TRIGONOMETRY

8. 1sinθ1+sinθ=secθtanθ

TRIGONOMETRY

9. sinA+cosAsinA+cosA+sinAcosAsinA+cosA=2sin2Acos2A=212cos2A

TRIGONOMETRY

10. (sinθ+secθ)2+(cosθ+cosecθ)2=(1+secθ cosecθ)2

TRIGONOMETRY

11. (1+cotθcosecθ)(1+tanθ+secθ)=2

TRIGONOMETRY

12. (sin8θcos8θ)=(sin2θcos2θ)(12sin2θcos2θ)

TRIGONOMETRY

13. tanθ+secθ1tanθsecθ+1=1+sinθcosθ

TRIGONOMETRY

14. If x=rsinθcosϕ,y=rsinθsinϕ,z=rcosθ, then Prove that : x2+y2+z2=r2.

TRIGONOMETRY

15. If cotθ+tanθ=x and secθcosθ=y, then prove that (x2y)2/3(xy2)2/3=1

TRIGONOMETRY

16. If secθ+tanθ=p, then show that p21p2+1=sinθ

[CBSE - 2004]

TRIGONOMETRY

17. Prove that : tan2Atan2B=cos2Bcos2Acos2Bcos2A=sin2Asin2Bsin2Asin2B

[CBSE - 2005]

TRIGONOMETRY

18. Prove that : 1secxtanx1cosx=1cosx=1cosx1secx+tanx

[CBSE - 2005]

TRIGONOMETRY

19. Prove : (1+tan2A)+(1+1tan2A)=1sin2Asin4A

[CBSE - 2006]

TRIGONOMETRY

20. Evaluate :

tan7tan23tan60tan67tan83+cot54tan36+sin20sec702.

[CBSE - 2007]

TRIGONOMETRY

Qus. 20
Ans. 3

TRIGONOMETRY

21. Without using trigonometric tables, evaluate the following :

(sin265+sin225)+3(tan5tan15tan30tan75tan85)

[CBSE - 2008]

TRIGONOMETRY

Qus. 21
Ans. 2

TRIGONOMETRY

22. If sin3θ=cos(θ60) and 3θ and θ60 are acute, find the value of θ

[CBSE - 2008]

TRIGONOMETRY

Qus. 22
Ans. 24

TRIGONOMETRY

23. If sinθ=cosθ, find the value of θ.

[CBSE - 2008]

TRIGONOMETRY

Qus. 23
Ans. 45

TRIGONOMETRY

24. If 7sin2θ+3cos2θ=4, show that tanθ=13

[CBSE - 2008]

TRIGONOMETRY

25. Prove : sinθ(1+tanθ)+cosθ(1+cotθ)=secθ+cosecθ.



Table of Contents