Wave Optics Question 8

Question 8 - 2024 (29 Jan Shift 2)

In a single slit diffraction pattern, a light of wavelength $6000 \mathring{A}$ is used. The distance between the first and third minima in the diffraction pattern is found to be $3 mm$ when the screen in placed $50 cm$ away from slits. The width of the slit is $\times 10^{-4} m$.

Show Answer

Answer: (2)

Solution:

For $n^{\text {th }}$ minima

$b \sin \theta=n \lambda$

( $\lambda$ is small so $\sin \theta$ is small, hence $\sin \theta \simeq \tan \theta$ )

$\operatorname{btan} \theta=n \lambda$

$b \frac{y}{D}=n \lambda$

$\Rightarrow y _n=\frac{n \lambda D}{b}\left(\right.$ Position of $n^{\text {th }}$ minima)

$B \rightarrow 1^{\text {st }}$ minima, $A \rightarrow 3^{\text {rd }}$ minima

$y _3=\frac{3 \lambda D}{b}, y _1=\frac{\lambda D}{b}$

$\Delta y=y _3-y _1=\frac{2 \lambda D}{b}$

$3 \times 10^{-3}=\frac{2 \times 6000 \times 10^{-10} \times 0.5}{b}$

$b=\frac{2 \times 6000 \times 10^{-10} \times 0.5}{3 \times 10^{-3}}$

$b=2 \times 10^{-4} m$

$x=2$