Wave Optics Question 8

Question 8 - 2024 (29 Jan Shift 2)

In a single slit diffraction pattern, a light of wavelength $6000 \AA$ is used. The distance between the first and third minima in the diffraction pattern is found to be $3 \mathrm{~mm}$ when the screen in placed $50 \mathrm{~cm}$ away from slits. The width of the slit is $\times 10^{-4} \mathrm{~m}$.

Show Answer

Answer: (2)

Solution:

For $\mathrm{n}^{\text {th }}$ minima

$\mathrm{b} \sin \theta=\mathrm{n} \lambda$

( $\lambda$ is small so $\sin \theta$ is small, hence $\sin \theta \simeq \tan \theta$ )

$\operatorname{btan} \theta=\mathrm{n} \lambda$

$\mathrm{b} \frac{\mathrm{y}}{\mathrm{D}}=\mathrm{n} \lambda$

$\Rightarrow y_{n}=\frac{n \lambda D}{b}\left(\right.$ Position of $n^{\text {th }}$ minima)

$\mathrm{B} \rightarrow 1^{\text {st }}$ minima, $\mathrm{A} \rightarrow 3^{\text {rd }}$ minima

$\mathrm{y}{3}=\frac{3 \lambda \mathrm{D}}{\mathrm{b}}, \mathrm{y}{1}=\frac{\lambda \mathrm{D}}{\mathrm{b}}$

$\Delta \mathrm{y}=\mathrm{y}{3}-\mathrm{y}{1}=\frac{2 \lambda \mathrm{D}}{\mathrm{b}}$

$3 \times 10^{-3}=\frac{2 \times 6000 \times 10^{-10} \times 0.5}{b}$

$\mathrm{b}=\frac{2 \times 6000 \times 10^{-10} \times 0.5}{3 \times 10^{-3}}$

$\mathrm{b}=2 \times 10^{-4} \mathrm{~m}$

$\mathrm{x}=2$