Wave Optics Question 3

Question 3 - 2024 (01 Feb Shift 2)

In Young’s double slit experiment, monochromatic light of wavelength $5000 \mathring{A}$ is used. The slits are $1.0 mm$ apart and screen is placed at $1.0 m$ away from slits. The distance from the centre of the screen where intensity becomes half of the maximum intensity for the first time is $\times 10^{-6} m$.

Show Answer

Answer: (125)

Solution:

Let intensity of light on screen due to each slit is $I _0$

So internity at centre of screen is $4 I _0$

Intensity at distance y from centre-

$I=I _0+I _0+2 \sqrt{I _0 I _0} \cos \phi$

$I _{\max }=4 I _0$

$\frac{I _{\text {max }}}{2}=2 I _0=2 I _0+2 I _0 \cos \phi$

$\cos \phi=0$

$\phi=\frac{\pi}{2}$

$K \Delta x=\frac{\pi}{2}$

$\frac{2 \pi}{\lambda} d \sin \theta=\frac{\pi}{2}$

$\frac{2}{\lambda} d \times \frac{y}{D}=\frac{1}{2}$

$y=\frac{\lambda D}{4 d}=\frac{5 \times 10^{-7} \times 1}{4 \times 10^{-3}}$

$=125 \times 10^{-6}$

$=125$