Wave Optics Question 3

Question 3 - 2024 (01 Feb Shift 2)

In Young’s double slit experiment, monochromatic light of wavelength $5000 \AA$ is used. The slits are $1.0 \mathrm{~mm}$ apart and screen is placed at $1.0 \mathrm{~m}$ away from slits. The distance from the centre of the screen where intensity becomes half of the maximum intensity for the first time is matho $\times 10^{-6} \mathrm{~m}$.

Show Answer

Answer: (125)

Solution:

Let intensity of light on screen due to each slit is $\mathrm{I}_{0}$

So internity at centre of screen is $4 I_{0}$

Intensity at distance y from centre-

$\mathrm{I}=\mathrm{I}{0}+\mathrm{I}{0}+2 \sqrt{\mathrm{I}{0} \mathrm{I}{0}} \cos \phi$

$\mathrm{I}{\max }=4 \mathrm{I}{0}$

$\frac{\mathrm{I}{\text {max }}}{2}=2 \mathrm{I}{0}=2 \mathrm{I}{0}+2 \mathrm{I}{0} \cos \phi$

$\cos \phi=0$

$\phi=\frac{\pi}{2}$

$\mathrm{K} \Delta \mathrm{x}=\frac{\pi}{2}$

$\frac{2 \pi}{\lambda} \mathrm{d} \sin \theta=\frac{\pi}{2}$

$\frac{2}{\lambda} \mathrm{d} \times \frac{\mathrm{y}}{\mathrm{D}}=\frac{1}{2}$

$\mathrm{y}=\frac{\lambda \mathrm{D}}{4 \mathrm{~d}}=\frac{5 \times 10^{-7} \times 1}{4 \times 10^{-3}}$

$=125 \times 10^{-6}$

$=125$