Nuclear Physics Question 4

Question 4 - 2024 (27 Jan Shift 2)

The atomic mass of ${ } _6 C^{12}$ is $12.000000 u$ and that of ${ } _6 C^{13}$ is $13.003354 u$. The required energy to remove a neutron from ${ } _6 C^{13}$, if mass of neutron is $1.008665 u$, will be :

(1) $62.5 MeV$

(2) $6.25 MeV$

(3) $4.95 MeV$

(4) $49.5 MeV$

Show Answer

Answer: (3)

Solution:

${ } _6 C^{13}+$ Energy $\rightarrow{ } _6 C^{12}+{ } _0 n^{1}$

$\Delta m=(12.000000+1.008665)-13.003354$

$=-0.00531 u$

$\therefore$ Energy required $=0.00531 \times 931.5 MeV$

$=4.95 MeV$