Nuclear Physics Question 4
Question 4 - 2024 (27 Jan Shift 2)
The atomic mass of ${ }{6} \mathrm{C}^{12}$ is $12.000000 \mathrm{u}$ and that of ${ }{6} \mathrm{C}^{13}$ is $13.003354 \mathrm{u}$. The required energy to remove a neutron from ${ }_{6} \mathrm{C}^{13}$, if mass of neutron is $1.008665 \mathrm{u}$, will be :
(1) $62.5 \mathrm{MeV}$
(2) $6.25 \mathrm{MeV}$
(3) $4.95 \mathrm{MeV}$
(4) $49.5 \mathrm{MeV}$
Show Answer
Answer: (3)
Solution:
${ }{6} \mathrm{C}^{13}+$ Energy $\rightarrow{ }{6} \mathrm{C}^{12}+{ }_{0} \mathrm{n}^{1}$
$\Delta \mathrm{m}=(12.000000+1.008665)-13.003354$
$=-0.00531 \mathrm{u}$
$\therefore$ Energy required $=0.00531 \times 931.5 \mathrm{MeV}$
$=4.95 \mathrm{MeV}$