Vector Algebra Question 7

Question 7 - 2024 (29 Jan Shift 2)

Let $\overrightarrow{OA}=\overrightarrow{a}, \overrightarrow{OB}=12 \overrightarrow{a}+4 \overrightarrow{b}$ and $\overrightarrow{OC}=\overrightarrow{b}$, where $O$ is the origin. If $S$ is the parallelogram with adjacent sides $OA$ and $OC$, then area of the quadrilateral $OABC$ is equal to

(1) 6

(2) 10

(3) 7

(4) 8

Show Answer

Answer (4)

Solution

Area of parallelogram, $\quad S=|\vec{a} \times \vec{b}|$

Area of quadrilateral $=\operatorname{Area}(\triangle OAB)+\operatorname{Area}(\triangle OBC)$

$=\frac{1}{2}{|\overrightarrow{a} \times(12 \overrightarrow{a}+4 \overrightarrow{b})|+|\overrightarrow{b} \times(12 \overrightarrow{a}+4 \overrightarrow{b})|}$

$=8|(\overrightarrow{a} \times \overrightarrow{b})|$

Ratio $=\frac{8|(\overrightarrow{a} \times \overrightarrow{b})|}{|(\overrightarrow{a} \times \overrightarrow{b})| \text { math }}=8$