Vector Algebra Question 7

Question 7 - 2024 (29 Jan Shift 2)

Let $\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{OB}}=12 \overrightarrow{\mathrm{a}}+4 \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{b}}$, where $\mathrm{O}$ is the origin. If $\mathrm{S}$ is the parallelogram with adjacent sides $\mathrm{OA}$ and $\mathrm{OC}$, then area of the quadrilateral $\mathrm{OABC}$ is equal to

(1) 6

(2) 10

(3) 7

(4) 8

Show Answer

Answer (4)

Solution

Description of the image

Area of parallelogram, $\quad S=|\vec{a} \times \vec{b}|$

Area of quadrilateral $=\operatorname{Area}(\triangle \mathrm{OAB})+\operatorname{Area}(\triangle \mathrm{OBC})$

$=\frac{1}{2}{|\overrightarrow{\mathrm{a}} \times(12 \overrightarrow{\mathrm{a}}+4 \overrightarrow{\mathrm{b}})|+|\overrightarrow{\mathrm{b}} \times(12 \overrightarrow{\mathrm{a}}+4 \overrightarrow{\mathrm{b}})|}$

$=8|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})|$

Ratio $=\frac{8|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})|}{|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})| \text { math }}=8$