Straight Lines Question 4

Question 4 - 2024 (27 Jan Shift 2)

Let $A$ and $B$ be two finite sets with $m$ and $n$ elements respectively. The total number of subsets of the set $A$ is 56 more than the total number of subsets of $B$. Then the distance of the point $P(m, n)$ from the point $Q(-2,-3)$ is

(1) 10

(2) 6

(3) 4

(4) 8

Show Answer

Answer (1)

Solution

$$ \begin{aligned} & 2^{m}-2^{n}=56 \\ & 2^{n}\left(2^{m-n}-1\right)=2^{3} \times 7 \end{aligned} $$

$2^{n}=2^{3}$ and $2^{m-n}-1=7$

$\Rightarrow n=3$ and $2^{m-n}=8$

$\Rightarrow n=3$ and $m-n=3$

$\Rightarrow n=3$ and $m=6$

$P(6,3)$ and $Q(-2,-3)$

$PQ=\sqrt{8^{2}+6^{2}}=\sqrt{100}=10$

Hence option (1) is correct