Straight Lines Question 4

Question 4 - 2024 (27 Jan Shift 2)

Let $A$ and $B$ be two finite sets with $m$ and $n$ elements respectively. The total number of subsets of the set $A$ is 56 more than the total number of subsets of $B$. Then the distance of the point $\mathrm{P}(\mathrm{m}, \mathrm{n})$ from the point $\mathrm{Q}(-2,-3)$ is

(1) 10

(2) 6

(3) 4

(4) 8

Show Answer

Answer (1)

Solution

$$ \begin{aligned} & 2^{m}-2^{n}=56 \ & 2^{n}\left(2^{m-n}-1\right)=2^{3} \times 7 \end{aligned} $$

$2^{\mathrm{n}}=2^{3}$ and $2^{\mathrm{m}-\mathrm{n}}-1=7$

$\Rightarrow \mathrm{n}=3$ and $2^{\mathrm{m}-\mathrm{n}}=8$

$\Rightarrow \mathrm{n}=3$ and $\mathrm{m}-\mathrm{n}=3$

$\Rightarrow \mathrm{n}=3$ and $\mathrm{m}=6$

$\mathrm{P}(6,3)$ and $\mathrm{Q}(-2,-3)$

$\mathrm{PQ}=\sqrt{8^{2}+6^{2}}=\sqrt{100}=10$

Hence option (1) is correct