Statistics Question 3

Question 3 - 2024 (27 Jan Shift 1)

Let $a _1, a _2, \ldots a _{10}$ be 10 observations such that $\sum _{k=1}^{10} a _k=50$ and $\sum _{\forall k<j} a _k \cdot a _j=1100$. Then the standard deviation of $a _1, a _2, \ldots, a _{10}$ is equal to :

(1) 5

(2) $\sqrt{5}$

(3) 10

(4) $\sqrt{115}$

Show Answer

Answer (2)

Solution

$\sum _{k=1}^{10} a _k=50$

$a _1+a _2+\ldots+a _{10}=50 \ldots$

$\sum _{\forall k<j} a _k a _j=1100$.

If $a _1+a _2+\ldots+a _{10}=50$.

$\left(a _1+a _2+\ldots+a _{10}\right)^{2}=2500$

$\Rightarrow \sum _{i=1}^{10} a _i^{2}+2 \sum _{k<j} a _k a _j=2500$

$\Rightarrow \sum _{i=1}^{10} a _i^{2}=2500-2(1100)$

$\sum _{i=1}^{10} a _i^{2}=300$, Standard deviation ’ $\sigma$ '

$=\sqrt{\frac{\sum a _i^{2}}{10}-\left(\frac{\sum a _i}{10}\right)^{2}}=\sqrt{\frac{300}{10}-\left(\frac{50}{10}\right)^{2}}$

$=\sqrt{30-25}=\sqrt{5}$