Statistics Question 3

Question 3 - 2024 (27 Jan Shift 1)

Let $a_{1}, a_{2}, \ldots a_{10}$ be 10 observations such that $\sum_{\mathrm{k}=1}^{10} \mathrm{a}{\mathrm{k}}=50$ and $\sum{\forall \mathrm{k}<\mathrm{j}} \mathrm{a}{\mathrm{k}} \cdot \mathrm{a}{\mathrm{j}}=1100$. Then the standard deviation of $a_{1}, a_{2}, \ldots, a_{10}$ is equal to :

(1) 5

(2) $\sqrt{5}$

(3) 10

(4) $\sqrt{115}$

Show Answer

Answer (2)

Solution

$\sum_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50$

$a_{1}+a_{2}+\ldots+a_{10}=50 \ldots$

$\sum_{\forall \mathrm{k}<\mathrm{j}} \mathrm{a}{\mathrm{k}} \mathrm{a}{\mathrm{j}}=1100$.

If $\mathrm{a}{1}+\mathrm{a}{2}+\ldots+\mathrm{a}_{10}=50$.

$\left(a_{1}+a_{2}+\ldots+a_{10}\right)^{2}=2500$

$\Rightarrow \sum_{\mathrm{i}=1}^{10} \mathrm{a}{\mathrm{i}}^{2}+2 \sum{\mathrm{k}<\mathrm{j}} \mathrm{a}{\mathrm{k}} \mathrm{a}{\mathrm{j}}=2500$

$\Rightarrow \sum_{\mathrm{i}=1}^{10} \mathrm{a}_{\mathrm{i}}^{2}=2500-2(1100)$

$\sum_{\mathrm{i}=1}^{10} \mathrm{a}_{\mathrm{i}}^{2}=300$, Standard deviation ’ $\sigma$ '

$=\sqrt{\frac{\sum \mathrm{a}{\mathrm{i}}^{2}}{10}-\left(\frac{\sum \mathrm{a}{\mathrm{i}}}{10}\right)^{2}}=\sqrt{\frac{300}{10}-\left(\frac{50}{10}\right)^{2}}$

$=\sqrt{30-25}=\sqrt{5}$