Sets And Relations Question 2

Question 2 - 2024 (01 Feb Shift 1)

Let A={$1,2,3, \ldots 20$}. Let $R _1$ and $R _2$ two relation on $A$ such that

$R _1=(a, b): b$ is divisible by a

$R _2=(a, b): a$ is an integral multiple of b

Then, number of elements in $R _1-R _2$ is equal

to

Show Answer

Answer (46)

Solution

$n\left(R _1\right)=20+10+6+5+4+3+2+2+2$

$+2+\underbrace{1+\ldots+1} _{10 \text { times }}$

$n\left(R _1\right)=66$

$R _1 \cap R _2={(1,1),(2,2), \ldots(20,20)}$

$n\left(R _1 \cap R _2\right)=20$

$n\left(R _1-R _2\right)=n\left(R _1\right)-n\left(R _1 \cap R _2\right)$

$=n\left(R _1\right)-20$

$=66-20$

$R _1-R _2=46$ Pair