Sets And Relations Question 2

Question 2 - 2024 (01 Feb Shift 1)

Let $A={1,2,3, \ldots 20}$. Let $R_{1}$ and $R_{2}$ two relation on $A$ such that

$\mathrm{R}_{1}={(\mathrm{a}, \mathrm{b}): \mathrm{b}$ is divisible by $\mathrm{a}}$

$R_{2}={(a, b): a$ is an integral multiple of $b}$.

Then, number of elements in $R_{1}-R_{2}$ is equal

to

Show Answer

Answer (46)

Solution

$n\left(R_{1}\right)=20+10+6+5+4+3+2+2+2$

$+2+\underbrace{1+\ldots+1}_{10 \text { times }}$

$\mathrm{n}\left(\mathrm{R}_{1}\right)=66$

$\mathrm{R}{1} \cap \mathrm{R}{2}={(1,1),(2,2), \ldots(20,20)}$

$\mathrm{n}\left(\mathrm{R}{1} \cap \mathrm{R}{2}\right)=20$

$\mathrm{n}\left(\mathrm{R}{1}-\mathrm{R}{2}\right)=\mathrm{n}\left(\mathrm{R}{1}\right)-\mathrm{n}\left(\mathrm{R}{1} \cap \mathrm{R}_{2}\right)$

$=\mathrm{n}\left(\mathrm{R}_{1}\right)-20$

$=66-20$

$\mathrm{R}{1}-\mathrm{R}{2}=46$ Pair