Determinants Question 1

Question 1 - 2024 (01 Feb Shift 1)

If the system of equations

$2 x+3 y-z=5$

$x+\alpha y+3 z=-4$

$3 x-y+\beta z=7$

has infinitely many solutions, then $13 \alpha \beta$ is equal to

(1) 1110

(2) 1120

(3) 1210

(4) 1220

Show Answer

Answer (2)

Solution

Using family of planes

$2 x+3 y-z-5=k _1(x+\alpha y+3 z+4)+k _2(3 x-y$

$+\beta \mathbf{z}-7$ )

$2=k _1+3 k _2, 3=k _1 \alpha-k _2,-1=3 k _1+\beta k _2,-5=$

$4 k _1-7 k _2$

On solving we get

$$ \begin{gathered} k _2=\frac{13}{19}, k _1=\frac{-1}{19}, \alpha=-70, \beta=\frac{-16}{13} \\ 13 \alpha \beta=13(-70)\left(\frac{-16}{13}\right) \\ =1120 \end{gathered} $$