Determinants Question 1

Question 1 - 2024 (01 Feb Shift 1)

If the system of equations

$2 x+3 y-z=5$

$x+\alpha y+3 z=-4$

$3 x-y+\beta z=7$

has infinitely many solutions, then $13 \alpha \beta$ is equal to

(1) 1110

(2) 1120

(3) 1210

(4) 1220

Show Answer

Answer (2)

Solution

Using family of planes

$2 \mathrm{x}+3 \mathrm{y}-\mathrm{z}-5=\mathrm{k}{1}(\mathrm{x}+\alpha \mathrm{y}+3 \mathrm{z}+4)+\mathrm{k}{2}(3 \mathrm{x}-\mathrm{y}$

$+\beta \mathbf{z}-7$ )

$2=\mathrm{k}{1}+3 \mathrm{k}{2}, 3=\mathrm{k}{1} \alpha-\mathrm{k}{2},-1=3 \mathrm{k}{1}+\beta \mathrm{k}{2},-5=$

$4 \mathrm{k}{1}-7 \mathrm{k}{2}$

On solving we get

$$ \begin{gathered} k_{2}=\frac{13}{19}, k_{1}=\frac{-1}{19}, \alpha=-70, \beta=\frac{-16}{13} \ 13 \alpha \beta=13(-70)\left(\frac{-16}{13}\right) \ =1120 \end{gathered} $$