Continuity And Differentiability Question 1

Question 1 - 2024 (01 Feb Shift 1)

Let $f: R \rightarrow R$ be defined as

$f(x)=\begin{cases}\frac{a-b \cos 2 x}{x^{2}} & ; & x<0 \\ x^{2}+c x+2 & ; & 0 \leq x \leq 1 \\ 2 x+1 & ; & x>1\end{cases}$

If $f$ is continuous everywhere in $\mathbf{R}$ and $m$ is the number of points where $f$ is NOT differential then $m+a+b+c$ equals :

(1) 1

(2) 4

(3) 3

(4) 2

Show Answer

Answer (4)

Solution

At $x=1, f(x)$ is continuous therefore,

$f\left(1^{-}\right)=f(1)=f\left(1^{+}\right)$

$f(1)=3+c$

$f\left(1^{+}\right)=\lim _{h \rightarrow 0} 2(1+h)+1$

$f\left(1^{+}\right)=\lim _{h \rightarrow 0} 3+2 h=3$

from (1) & (2)

$c=0$

at $x=0, f(x)$ is continuous therefore,

$f\left(0^{-}\right)=f(0)=f\left(0^{+}\right)$

$f(0)=f\left(0^{+}\right)=2$

$f\left(0^{-}\right)$has to be equal to 2

$\lim _{h \rightarrow 0} \frac{a-b \cos (2 h)}{h^{2}}$

$\lim _{h \rightarrow 0} \frac{a-b{1-\frac{4 h^{2}}{2 !}+\frac{16 h^{4}}{4 !}+\ldots }}{h^{2}}$

$\lim _{h \rightarrow 0} \frac{a-b+b{2 h^{2}-\frac{2}{3} h^{4} \ldots }}{h^{2}}$

for limit to exist $a-b=0$ and limit is $2 b$

from (3), (4) & (5)

$a=b=1$

checking differentiability at $x=0$

LHD : $\lim _{h \rightarrow 0} \frac{\frac{1-\cos 2 h}{h^{2}}-2}{-h}$

$\lim _{h \rightarrow 0} \frac{1-\left(1-\frac{4 h^{2}}{2 !}+\frac{16 h^{4}}{4 !} \cdot \ldots\right)-2 h^{2}}{-h^{3}}=0$

RHD : $\lim _{h \rightarrow 0} \frac{(0+h)^{2}+2-2}{h}=0$

Function is differentiable at every point in its domain

$\therefore m=0$

$m+a+b+c=0+1+1+0=2$