Continuity And Differentiability Question 1

Question 1 - 2024 (01 Feb Shift 1)

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as

$f(x)=\left{\begin{array}{ccc}\frac{a-b \cos 2 x}{x^{2}} & ; & x<0 \ x^{2}+c x+2 & ; & 0 \leq x \leq 1 \ 2 x+1 & ; & x>1\end{array}\right.$

If $f$ is continuous everywhere in $\mathbf{R}$ and $\mathrm{m}$ is the number of points where $f$ is NOT differential then $\mathrm{m}+\mathrm{a}+\mathrm{b}+\mathrm{c}$ equals :

(1) 1

(2) 4

(3) 3

(4) 2

Show Answer

Answer (4)

Solution

At $\mathrm{x}=1, \mathrm{f}(\mathrm{x})$ is continuous therefore,

$\mathrm{f}\left(1^{-}\right)=\mathrm{f}(1)=\mathrm{f}\left(1^{+}\right)$

$\mathrm{f}(1)=3+\mathrm{c}$

$\mathrm{f}\left(1^{+}\right)=\lim _{h \rightarrow 0} 2(1+\mathrm{h})+1$

$\mathrm{f}\left(1^{+}\right)=\lim _{h \rightarrow 0} 3+2 \mathrm{~h}=3$

from (1) & (2)

$\mathrm{c}=0$

at $\mathrm{x}=0, \mathrm{f}(\mathrm{x})$ is continuous therefore,

$\mathrm{f}\left(0^{-}\right)=\mathrm{f}(0)=\mathrm{f}\left(0^{+}\right)$

$\mathrm{f}(0)=\mathrm{f}\left(0^{+}\right)=2$

$\mathrm{f}\left(0^{-}\right)$has to be equal to 2

$\lim _{h \rightarrow 0} \frac{a-b \cos (2 h)}{h^{2}}$

$\lim _{h \rightarrow 0} \frac{a-b\left{1-\frac{4 h^{2}}{2 !}+\frac{16 h^{4}}{4 !}+\ldots\right}}{h^{2}}$

$\lim _{h \rightarrow 0} \frac{a-b+b\left{2 h^{2}-\frac{2}{3} h^{4} \ldots\right}}{h^{2}}$

for limit to exist $\mathrm{a}-\mathrm{b}=0$ and limit is $2 \mathrm{~b}$

from (3), (4) & (5)

$\mathrm{a}=\mathrm{b}=1$

checking differentiability at $\mathrm{x}=0$

LHD : $\lim _{h \rightarrow 0} \frac{\frac{1-\cos 2 h}{h^{2}}-2}{-h}$

$\lim _{h \rightarrow 0} \frac{1-\left(1-\frac{4 h^{2}}{2 !}+\frac{16 h^{4}}{4 !} \cdot \ldots\right)-2 h^{2}}{-h^{3}}=0$

RHD : $\lim _{h \rightarrow 0} \frac{(0+h)^{2}+2-2}{h}=0$

Function is differentiable at every point in its domain

$\therefore \mathrm{m}=0$

$\mathrm{m}+\mathrm{a}+\mathrm{b}+\mathrm{c}=0+1+1+0=2$