Circle Question 7

Question 7 - 2024 (30 Jan Shift 1)

If the circles $(x+1)^{2}+(y+2)^{2}=r^{2} \quad$ and $x^{2}+y^{2}-4 x-4 y+4=0$ intersect at exactly two distinct points, then

(1) $5<r<9$

(2) $0<r<7$

(3) $3<r<7$

(4) $\frac{1}{2}<r<7$

Show Answer

Answer (3)

Solution

If two circles intersect at two distinct points

$\Rightarrow\left|r _1-r _2\right|<C _1 C _2<r _1+r _2$

$|r-2|<\sqrt{9+16}<r+2$

$|r-2|<5$ and $r+2>5$

$-5<r-2<5 \quad r>3$

$-3<r<7$

From (1) and (2)

$3<r<7$