Circle Question 7

Question 7 - 2024 (30 Jan Shift 1)

If the circles $(x+1)^{2}+(y+2)^{2}=r^{2} \quad$ and $x^{2}+y^{2}-4 x-4 y+4=0$ intersect at exactly two distinct points, then

(1) $5<\mathrm{r}<9$

(2) $0<\mathrm{r}<7$

(3) $3<r<7$

(4) $\frac{1}{2}<\mathrm{r}<7$

Show Answer

Answer (3)

Solution

If two circles intersect at two distinct points

$\Rightarrow\left|\mathrm{r}{1}-\mathrm{r}{2}\right|<\mathrm{C}{1} \mathrm{C}{2}<\mathrm{r}{1}+\mathrm{r}{2}$

$|r-2|<\sqrt{9+16}<r+2$

$|r-2|<5$ and $r+2>5$

$-5<\mathrm{r}-2<5 \quad \mathrm{r}>3$

$-3<r<7$

From (1) and (2)

$3<\mathrm{r}<7$