Circle Question 10

Question 10 - 2024 (31 Jan Shift 2)

Let a variable line passing through the centre of the circle $x^{2}+y^{2}-16 x-4 y=0$, meet the positive coordinate axes at the point $A$ and $B$. Then the minimum value of $OA+OB$, where $O$ is the origin, is equal to

(1) 12

(2) 18

(3) 20

(4) 24

Show Answer

Answer (2)

Solution

$(y-2)=m(x-8)$

$\Rightarrow x$-intercept

$\Rightarrow\left(\frac{-2}{m}+8\right)$

$\Rightarrow y$-intercept

$\Rightarrow(-8 m+2)$

$\Rightarrow OA+OB=\frac{-2}{m}+8-8 m+2$

$f^{\prime}(m)=\frac{2}{m^{2}}-8=0$

$\Rightarrow m^{2}=\frac{1}{4}$

$\Rightarrow m=\frac{-1}{2}$

$\Rightarrow f\left(\frac{-1}{2}\right)=18$

$\Rightarrow$ Minimum $=18$