Circle Question 10

Question 10 - 2024 (31 Jan Shift 2)

Let a variable line passing through the centre of the circle $x^{2}+y^{2}-16 x-4 y=0$, meet the positive coordinate axes at the point $\mathrm{A}$ and $\mathrm{B}$. Then the minimum value of $\mathrm{OA}+\mathrm{OB}$, where $\mathrm{O}$ is the origin, is equal to

(1) 12

(2) 18

(3) 20

(4) 24

Show Answer

Answer (2)

Solution

$(y-2)=m(x-8)$

$\Rightarrow x$-intercept

$\Rightarrow\left(\frac{-2}{m}+8\right)$

$\Rightarrow y$-intercept

$\Rightarrow(-8 \mathrm{~m}+2)$

$\Rightarrow \mathrm{OA}+\mathrm{OB}=\frac{-2}{\mathrm{~m}}+8-8 \mathrm{~m}+2$

$\mathrm{f}^{\prime}(\mathrm{m})=\frac{2}{\mathrm{~m}^{2}}-8=0$

$\Rightarrow \mathrm{m}^{2}=\frac{1}{4}$

$\Rightarrow \mathrm{m}=\frac{-1}{2}$

$\Rightarrow \mathrm{f}\left(\frac{-1}{2}\right)=18$

$\Rightarrow$ Minimum $=18$