Functions Question 2

Question 2 - 24 January - Shift 2

Let $f(x)$ be a function such that $f(x+y)=f(x) \cdot f(y)$ for all $x, y \in N$. If $f(1)=3$ and $\sum _{k=1}^{n} f(k)=3279$ , then the value of $n$ is

(1) 6

(2) 8

(3) 7

(4) 9

Show Answer

Answer: (3)

Solution:

Formula: Sum of terms in G.P., Operations on functions

$f(x+y)=f(x) \cdot f(y) ; ; \forall x, y \in N, f(1)=3$

$f(2)=f^{2}(1)=3^{2}$

$f(3)=f(1) f(2)=3^{3}$

$f(4)=3^{4}$

$f(k)=3^{k}$

$\sum _{k=1}^{n} f(k)=3279$

$f(1)+f(2)+f(3)+\ldots \ldots \ldots .+f(n)=3279$

$3+3^{2}+3^{3}+\ldots \ldots \ldots .3^{n}=3279$

$\frac{3(3^{n}-1)}{3-1}=3279$

$\frac{3^{n}-1}{2}=1093$

$3^{n}-1=2186$

$3^{n}=2187$

$n=7$