Sequence And Series

An Arithmetic Progression (A.P.):

PYQ-2023-Sequence_and_Series-Q4, PYQ-2023-Sequence_and_Series-Q11, PYQ-2023-Sequence_and_Series-Q13, PYQ-2023-Sequence_and_Series-Q15, PYQ-2023-Sequence_and_Series-Q16, PYQ-2023-Sequence_and_Series-Q19, PYQ-2023-Sequence_and_Series-Q22, PYQ-2023-Statistics-Q1, PYQ-2023-Statistics-Q4, PYQ-2023-Statistics-Q10

  • $ a, a+d, a+2 d, \ldots \ldots . . a+(n-1) d$ is an A.P. . let $a$ be the first term and $d$ be the common difference of an A.P., then

$$ n^{\text {th }} \text{term} =t_{n}=a+(n-1) d$$

  • $ \ \text{The sum of first} $ $\mathbf{n}$ terms of are A.P.

$$ \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=\frac{\mathrm{n}}{2}[\mathrm{a}+\ell] $$

  • $ r^{\text {th }}$ term of an A.P. when sum of first $r$ terms is given is

$$t_{r}=S_{r}-S_{r-1}$$

Properties of A.P.

PYQ-2023-Sequence_and_Series-Q1, PYQ-2023-Sequence_and_Series-Q12, PYQ-2023-Binomial_Theorem-Q23

  • If $a, b, c$ are in A.P. $\Rightarrow 2b = a + c$

  • If $a, b, c, d$ are in A.P. $\Rightarrow a + d = b + c$

  • Three numbers in A.P. can be taken as $a - d, a, a + d$

  • Four numbers in A.P. can be taken as $a - 3d, a - d, a + d, a + 3d$

  • Five numbers in A.P. are $a - 2d, a - d, a, a + d, a + 2d$

  • Six terms in A.P. are $a - 5d, a - 3d, a - d, a + d, a + 3d, a + 5d$ etc.

  • Sum of the terms of an A.P. equidistant from the beginning and end equals the sum of the first and last term.

Arithmetic Mean (Mean or Average) (A.M.):

  • If three terms are in A.P. then the middle term is called the A.M. between the other two, so if a, b, c are in A.P., b is A.M. of a & c.

  • n-Arithmetic Means Between Two Numbers:

    • If $a, b$ are any two given numbers & $ a, A_{1}, A_{2}, \ldots, A_{n}, b$ are in $A . P$. then $A_{1}, A_{2}, \ldots A_{n}$ are the n A.M.’s between $a$ & $b .$

    $$A_{1}=a+\frac{b-a}{n+1}, A_{2}=a+\frac{2(b-a)}{n+1}, \ldots \ldots, A_{n}=a+\frac{n(b-a)}{n+1}$$

    $$\sum_{r=1}^{n} A_{r}= nA $$

    where A is the single A.M. between $ a $ & $b $

Geometric Progression:

PYQ-2023-Probability-Q5, PYQ-2023-Sequence_and_Series-Q2, PYQ-2023-Sequence_and_Series-Q6, PYQ-2023-Sequence_and_Series-Q7, PYQ-2023-Binomial_Theorem-Q13, PYQ-2023-ITF-Q5, PYQ-2023-Definite_Integration-Q13, PYQ-2023-Function-Q2, PYQ-2023-Function-Q12, PYQ-2023-MOD-Q2

$\quad$ a, $a r, a r^{2}, a r^{3}, a r^{4}, \ldots \ldots$ is a G.P. with a as the first term & $r$ as common ratio.

  • $ n^{\text {th }}$ term $=\operatorname{ar}^{n-1}$

  • Sum of the first $n$ terms i.e. $$ S_{n} = \frac{a(r^n -1)}{r-1} , r \ne 1 $$

$$ S_{n} = na , r = 1 $$

  • Sum of an infinite G.P. when |r| < 1 is given by

$$ S_\infty = \frac{a}{1-r} , \ \ (|r| < 1)$$

Geometric Means (Mean Proportional) (G.M.):

PYQ-2023-Sequence_and_Series-Q11

  • If $a, b, c>0$ are in G.P., $b$ is the G.M. between $a$ & $c$, then $b^{2}=a c$

  • n-Geometric Means Between positive number $a$, $b$

    If $a, b$ are two given numbers & $a, G_{1}, G_{2}, \ldots . ., G_{n}$, $b$ are in (G.P.).Then $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ are $n$ G.M.s between $a$ & $b$.

$$G_{1}=a(\frac{b}{a})^{\frac{1}{n+1}}, G_{2}=a(\frac{b}{a})^{\frac{2}{n+1}}, \ldots \ldots, G_{n}=a(\frac{b}{a})^{\frac{n}{n+1}}$$

HARMONICAL PROGRESSION (H.P.):

PYQ-2023-Sequence_and_Series-Q9

  • Harmonical progression is defined as a series in which reciprocal of its terms are in A.P. The standard from of a H.P. is $$ \frac{1}{a}+\frac{1}{a+d}+\frac{1}{a+2 d}+\ldots $$

  • $a, b, c$ are in H.P. $\Leftrightarrow b=\frac{2 a c}{a+c}$

  • General term ( $n^{\text {th }}$ term) of a H.P. is given by $T_n=\frac{1}{a+(n-1) d}$

Note:

  • There is no formula and procedure for finding the sum of H.P.

  • If $a, b, c$ are in H.P. then $\frac{a}{c}=\frac{a-b}{b-c}$

  • If $a, b$ are first two terms of an H.P. then $ t_n=\frac{1}{\frac{1}{a}+(n-1)\left(\frac{1}{b}-\frac{1}{a}\right)}$

HARMONICAL MEAN (H.M.):

$\quad$ If three or more than three terms are in H.P., then all the numbers lying between first and last term are called Harmonical Means between them.

$\quad$ i.e; The H.M. between two given quantities $a$ and $b$ is $\mathrm{H}$ so that $a, H, b$, are in H.P.

$\quad$ i.e. $\frac{1}{\mathrm{a}}, \frac{1}{\mathrm{H}}, \frac{1}{\mathrm{~b}}$ are in A.P. $$ \frac{1}{H}-\frac{1}{a}=\frac{1}{b}-\frac{1}{H} \Rightarrow H=\frac{2 a b}{a+b} $$

$\quad$ Also $H=\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\ldots .+\frac{1}{a_n}}=\frac{n}{\sum_{j=1}^n \frac{1}{a_j}}$

$\quad$ The harmonic mean of $n$ non zero numbers $a_1, a_2, a_3, \ldots \ldots \ldots, a_n$.

Important Results:

PYQ-2023-Sequence_and_Series-Q3, PYQ-2023-Definite_Integration-Q5, PYQ-2023-Definite_Integration-Q6

  • $$\sum_{r=1}^{n}\left(a_{r} \pm b_{r}\right)=\sum_{r=1}^{n} a_{r} \pm \sum_{r=1}^{n} b_{r}$$

  • $$\sum_{r=1}^{n} k a_{r}=k \sum_{r=1}^{n} a_{r}$$

  • $$\sum_{r=1}^{n} k=n k \ , \text{where k is a constant} $$

  • Sum of first $n$ natural numbers

$$\sum_{r=1}^{n} r=1+2+3+\ldots \ldots \ldots . .+n=\frac{n(n+1)}{2}$$

  • Sum of first $\mathrm{n}$ odd natural numbers $$ \Rightarrow \sum_{r=1}^n(2 r-1)=n^2 $$

  • Sum of first $n$ even natural numbers $$ \Rightarrow \sum_{r=1}^n 2 r=n(n+1) $$

  • Sum of squares of first $n$ natural numbers

$$\sum_{r=1}^{n} r^{2}=1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots \ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$$

  • Sum of cubes of first $n$ natural numbers

$$ \sum_{r=1}^{n} r^{3}=1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots . .+n^{3}=\frac{n^{2}(n+1)^{2}}{4} $$

  • $$ 2 \sum_{i<j=1}^{n} a_{i} a_{j}=(a_{1}+a_{2}+\ldots \ldots \ldots+a_{n})^{2}-(a_{1}^{2}+a_{2}^{2}+\ldots \ldots+a_{n}^{2}) $$

  • Sum of fourth powers of first $n$ natural numbers $\left(\sum n^4\right)$ $$ \sum n^4=1^4+2^4+\ldots . .+n^4=\frac{n(n+1)(2 n+1)\left(3 n^2+3 n-1\right)}{30} $$

  • If $r^{\text {th }}$ term of an A.P. $$ T_r=A r^3+B r^2+C r+D \text {, then } $$ $\quad \quad \quad$ sum of $n$ term of AP is $$ S_n=\sum_{r=1}^n T_r=A \sum_{r=1}^n r^3+B \sum_{r=1}^n r^2+C \sum_{r=1}^n r+D \sum_{r=1}^n 1 $$

  • Relation between means

$\quad \quad \mathrm{G}^{2}=\mathrm{AH}, \quad$ A.M. $\geq$ G.M. $\geq$ H.M. and A.M. $=$ G.M. $=$ H.M.

$\quad \quad $ if $a_{1}=a_{2}=a_{3}=\ldots \ldots \ldots . .=a_{n}$

Important Note:

PYQ-2023-Sequence_and_Series-Q5, PYQ-2023-Statistics-Q10

  • If for an A.P. $p^{\text {th }}$ term is $q, q^{\text {th }}$ term is $p$ then $m^{\text {th }}$ term is $=p+q-m$

  • If for an AP sum of $p$ terms is $q$, sum of $q$ terms is $p$, then sum of $(p+q)$ term is $-(p+q)$.

  • If for an A.P. sum of $p$ terms is equal to sum of $q$ terms then sum of $(p+q)$ terms is zero

  • If sum of $n$ terms $S_n$ is given then general term $T_n=S_n-S_{n-1}$ where $S_{n-1}$ is sum of $(n-1)$ terms of A.P.

  • Common difference of AP is given by $d=S_2-2 S_1$ where $S_2$ is sum of first two terms and $\mathrm{S}_1$ is sum of first term or first term.

  • The sum of infinite terms of an A.P. is $\infty$ if $d>0$ and $-\infty$ if $d<0$

  • Sum of $n$ terms of an A.P. is of the form $A n^2+B n$ i.e. a quadratic expression in $n$, in such case the common difference is twice the coefficient of $n^2$. i.e. $2 A$

  • $n^{\text {th }}$ term of an A.P. is of the form $A n+B$ i.e. a linear expression in $n$, in such a case the coefficient of $n$ is the common difference of the A.P. i.e. A

  • If for the different A.P.’s $\frac{S_n}{S_n^{\prime}}=\frac{f_n}{\phi_n}$ then $\frac{T_n}{T_n^{\prime}}=\frac{f(2 n-1)}{\phi(2 n-1)}$

  • If for two A.P.’s $\frac{T_n}{T_n^{\prime}}=\frac{A n+B}{C n+D}$

Arithmetico-Geometrical Progression (A.G.P.):

PYQ-2023-Sequence_and_Series-Q8, PYQ-2023-Sequence_and_Series-Q10, PYQ-2023-Sequence_and_Series-Q17, PYQ-2023-Sequence_and_Series-Q18

$\quad$ If each term of a progression is the product of the corresponding terms of an A.P. and a G.P., then it is called arithmetic-geometric progression (A.G.P.)

e.g. $$a,(a+d) r,(a+2 d) r^2, \ldots \ldots$$.

  • The general term ( $n^{\text {th }}$ term) of an A.G.P. is $$ T_n=[a+(n-1) d] r^{n-1} $$

  • To find the sum of $n$ terms of an A.G.P. we suppose its sum $S$, multiply both sides by the common ratio of the corresponding G.P. and then subtract as in following way and

    we get a G.P. whose sum can be easily obtained. $$ \begin{aligned} & S_n=a+(a+d) r+(a+2 d) r^2+\ldots . .[a+(n-1) d] r^{n-1} \ & r S_n=\quad a r+(a+d) r^2+\ldots .+[a+(n-1) d] r^n \end{aligned} $$

    $\quad$ After subtraction we get $$ S_n(1-r)=a+r . d+r^2 \cdot d \ldots . . d r^{n-1}-[a+(n-1) d] r^n $$

    $\quad$ After solving $$ S_n=\frac{a}{1-r}+\frac{r \cdot d\left(1-r^{n-1}\right)}{(1-r)^2} $$ $\quad$ and $$S_{\infty}=\frac{a}{1-r}+\frac{d r}{(1-r)^2}$$

    $\quad $ Note : This is not a standard formula. This is only to understand the procedure for finding the sum of an A.G.P. However formula for sum of infinite terms can be used directly.



Mock Test for JEE

NCERT Chapter Video Solution

Dual Pane