Work Power and Energy 1 Question 6

7. A force $\mathbf{F}=-k(y \hat{\mathbf{i}}+x \hat{\mathbf{j}})$ (where, $k$ is a positive constant) acts on a particle moving in the $x-y$ plane. Starting from the origin, the particle is taken along the positive $X$-axis to the point $(a, 0)$ and then parallel to the $Y$-axis to the point $(a, a)$. The total work done by the force $F$ on the particle is

(a) $-2 k a^{2}$

(b) $2 k a^{2}$

(c) $-k a^{2}$

(d) $k a^{2}$

(1998, 2M)

Show Answer

Answer:

Correct Answer: 7. (c)

Solution:

  1. $d W=\mathbf{F} \cdot \mathbf{d} \mathbf{s}$, where $\mathbf{d} \mathbf{s}=d x \hat{\mathbf{i}}+d y \hat{\mathbf{j}}+d z \hat{\mathbf{k}}$

$$ \begin{array}{rlrl} & \text { and } & \mathbf{F} & =-k(y \hat{\mathbf{i}}+x \hat{\mathbf{j}}) \\ & \therefore & d W & =-k(y d x+x d y) \\ & & =-k d(x y) \\ & & W & =\int _{0,0}^{a, a} d W=-k \int _{0,0}^{a, a} d(x y)=-k[x y] _{0,0}^{a, a} \\ & W & =-k a^{2} \end{array} $$

Alternate Answer

While moving from $(0,0)$ to $(a, 0)$ along positive $X$-axis,

$y=0 \therefore \mathbf{F}=-k x \hat{\mathbf{j}}$ i.e. force is in negative $y$-direction while the displacement is in positive $x$-direction. Therefore, $W _1=0$ (Force $\perp$ displacement).

Then, it moves from $(a, 0)$ to $(a, a)$ along a line parallel to $Y$-axis $(x=+a)$. During this $\mathbf{F}=-k(y \hat{\mathbf{i}}+a \hat{\mathbf{j}})$

The first component of force, $-k y \hat{\mathbf{i}}$ will not contribute any work, because this component is along negative $x$-direction $(-\hat{\mathbf{i}})$ while displacement is in positive $y$-direction $(a, 0)$ to $(a, a)$.

The second component of force i.e. $-k a \hat{\mathbf{j}}$ will perform negative work $\begin{aligned} & \mathbf{F} _y=-k a \hat{\mathbf{j}} \ & \mathbf{s}=a \hat{\mathbf{j}}\end{aligned}, W _2=(-k a)(a)=-k a^{2}$

$$ \therefore \quad W=W _1+W _2=-k a^{2} $$

NOTE

In the given force, work done is path independent. It depends only on initial and final positions. Therefore, first method is brief and correct



NCERT Chapter Video Solution

Dual Pane