Rotation 1 Question 13

16. A solid sphere of radius $R$ has moment of inertia $I$ about its geometrical axis. It is melted into a disc of radius $r$ and thickness $t$. If it’s moment of inertia about the tangential axis (which is perpendicular to plane of the disc),

is also equal to $I$, then the value of $r$ is equal to

(a) $\frac{2}{\sqrt{15}} R$

(b) $\frac{2}{\sqrt{5}} R$

(c) $\frac{3}{\sqrt{15}} R$

(d) $\frac{\sqrt{3}}{\sqrt{15}} R$

Show Answer

Answer:

Correct Answer: 16. (a)

Solution:

  1. $\quad \frac{2}{5} M R^{2}=\frac{1}{2} M r^{2}+M r^{2}$

or $\quad \frac{2}{5} M R^{2}=\frac{3}{2} M r^{2}$

$\therefore \quad r=\frac{2}{\sqrt{15}} R$

$$ \begin{aligned} I & =\frac{m a^{2}}{6}=\frac{\frac{2}{\sqrt{3} \pi} M \frac{2}{\sqrt{3}} R^{2}}{\sigma} \\ & =\frac{4 M R^{2}}{9 \sqrt{3} \pi} \end{aligned} $$



NCERT Chapter Video Solution

Dual Pane