Laws of Motion 2 Question 2

2. A mass of $10 \mathrm{~kg}$ is suspended vertically by a rope from the roof. When a horizontal force is applied on the mass, the rope deviated at an angle of $45^{\circ}$ at the roof point. If the suspended mass is at equilibrium, the magnitude of the force applied is (Take, $g=10 \mathrm{~ms}^{-2}$ )

(2019 Main, 9 Jan II)

(a) $70 \mathrm{~N}$

(b) $200 \mathrm{~N}$

(c) $100 \mathrm{~N}$

(d) $140 \mathrm{~N}$

Show Answer

Answer:

Correct Answer: 2. (c)

Solution:

  1. FBD of the given system is follow

Let $T=$ tension in the rope.

For equilibrium condition of the mass,

$$ \begin{array}{lr} \Sigma F_{x}=0 & \text { (force in } x \text {-direction) } \\ \Sigma F_{y}=0 & \text { ( force in } y \text {-direction) } \end{array} $$

When $\Sigma F_{x}=0$, then

$$ \because \quad F=T \sin 45^{\circ} $$

When $\Sigma F_{y}=0$, then

$$ M g=T \cos 45^{\circ} $$

Using Eqs. (i) and (ii),

$$ \begin{aligned} & \Rightarrow \quad \frac{F}{M g}=\frac{T \sin 45^{\circ}}{T \cos 45^{\circ}} \Rightarrow \frac{F}{M g}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}=1 \\ & \Rightarrow \quad F=M g=10 \times 10=100 \mathrm{~N} \end{aligned} $$



NCERT Chapter Video Solution

Dual Pane