Heat and Thermodynamics 6 Question 13

17. Now consider the partition to be free to move without friction so that the pressure of gases in both compartments is the same. Then total work done by the gases till the time they achieve equilibrium will be

(2014 Adv.)

(a) $250 R$

(b) $200 R$

(c) $100 R$

(d) $-100 R$

Show Answer

Answer:

Correct Answer: 17. (d)

Solution:

  1. $\Delta W _1+\Delta U _1=\Delta Q _1\cdots(i)$

$\Delta W _2+\Delta U _2=\Delta Q _2\cdots(ii)$

$\Delta Q _1+\Delta Q _2=0$

$\therefore\left(n C _p \Delta T\right) _1+\left(n C _p \Delta T\right) _2=0$

But $\quad n _1=n _2=2$

$\therefore \quad \frac{5}{2} R(T-700)+\frac{7}{2} R(T-400)=0$

Solving, we get $T=525 K$

Now, from Eqs. (i) and (ii), we get

$$ \begin{array}{cc} \Delta W _1+\Delta W _2=-\Delta U _1-\Delta U _2 \\ \text { as } & \Delta Q _1+\Delta Q _2=0 \\ \therefore & \Delta W _1+\Delta W _2=-\left[\left(n C _V \Delta T\right) _1+\left(n C _V \Delta T\right) _2\right] \\ =-\left[2 \times \frac{3}{2} R \times(525-700)+2 \times \frac{5}{2} R \times(525-400)\right] \\ =-100 R \end{array} $$



NCERT Chapter Video Solution

Dual Pane