Heat and Thermodynamics 4 Question 26

28. The average translational energy and the rms speed of molecules in a sample of oxygen gas at $300 K$ are $6.21 \times 10^{-21} J$ and $484 m / s$ respectively. The corresponding values at $600 K$ are nearly (assuming ideal gas behaviour)

(1997, 1M)

(a) $12.42 \times 10^{-21} J, 968 m / s$

(b) $8.78 \times 10^{-21} J, 684 m / s$

(c) $6.21 \times 10^{-21} J, 968 m / s$

(d) $12.42 \times 10^{-21} J, 684 m / s$

Show Answer

Answer:

Correct Answer: 28. (d)

Solution:

  1. The average translational $KE=\frac{3}{2} k T$ which is directly proportional to $T$, while rms speed of molecules is given by

$$ v _{rms}=\sqrt{\frac{3 R T}{M}} \text { i.e. } v _{rms} \propto \sqrt{T} $$

When temperature of gas is increased from $300 K$ to $600 K$ (i.e. 2 times), the average translational $KE$ will increase to 2 times and rms speed to $\sqrt{2}$ or 1.414 times.

$\therefore$ Average translational KE $=2 \times 6.21 \times 10^{-21} J$

and

$$ =12.42 \times 10^{-21} J $$

$$ \begin{aligned} v _{rms} & =(1.414)(484) m / s \\ & \approx 684 m / s \end{aligned} $$



NCERT Chapter Video Solution

Dual Pane