Electrostatics 6 Question 3

3. A $4 \mu \mathrm{F}$ capacitor and a resistance of $2.5 \mathrm{M} \Omega$ are in series with $12 \mathrm{~V}$ battery. Find the time after which the potential difference across the capacitor is 3 times the potential difference across the resistor. [Given, $\ln (2)=0.693$ ]

(2005, 2M)

(a) $13.86 \mathrm{~s}$

(b) $6.93 \mathrm{~s}$

(c) $7 \mathrm{~s}$

(d) $14 \mathrm{~s}$

$(1983,6 \mathrm{M})$

Show Answer

Answer:

Correct Answer: 3. (a)

Solution:

  1. Given : $V_{C}=3 V_{R}=3\left(V-V_{C}\right)$

Here, $V$ is the applied potential.

$$ \begin{array}{ll} \therefore & V_{C}=\frac{3}{4} V \quad \text { or } \quad V\left(1-e^{-t / \tau_{c}}\right)=\frac{3}{4} V \\ \therefore & e^{-t / \tau_{c}}=\frac{1}{4} \end{array} $$

Here,

$$ \tau_{c}=C R=10 \mathrm{~s} $$

Substituting this value of $\tau_{c}$ in Eq. (i) and solving for $t$, we get

$$ t=13.86 \mathrm{~s} $$

$\therefore$ Correct answer is (a).



NCERT Chapter Video Solution

Dual Pane