Electrostatics 5 Question 28

30. A parallel plate capacitor of area $A$, plate separation $d$ and capacitance $C$ is filled with three different dielectric materials having dielectric constants $K_{1}, K_{2}$ and $K_{3}$ as shown. If a single dielectric material is to be used to have the same capacitance $C$ in this capacitor then its dielectric constant $K$ is given by

$(2000,2 \mathrm{M})$

(a) $\frac{1}{K}=\frac{1}{K_{1}}+\frac{1}{K_{2}}+\frac{1}{2 K_{3}}$

(b) $\frac{1}{K}=\frac{1}{K_{1}+K_{2}}+\frac{1}{2 K_{3}}$

(c) $\frac{1}{K}=\frac{K_{1} K_{2}}{K_{1}+K_{2}}+2 K_{3}$

(d) $K=\frac{K_{1} K_{3}}{K_{1}+K_{3}}+\frac{K_{2} K_{3}}{K_{2}+K_{3}}$

Show Answer

Answer:

Correct Answer: 30. (d)

Solution:

  1. Applying $C=\frac{\varepsilon_{0} A}{d-t_{1}-t_{2}+\frac{t_{1}}{K_{1}}+\frac{t_{2}}{K_{2}}}$, we have

$\frac{\varepsilon_{0}(A / 2)}{d-d / 2-d / 2+\frac{d / 2}{K_{1}}+\frac{d / 2}{K_{3}}}$

$ +\frac{\varepsilon_{0}(A / 2)}{d-d / 2-d / 2+\frac{d / 2}{K_{2}}+\frac{d / 2}{K_{3}}}=\frac{K \varepsilon_{0} A}{d} $

Solving this equation, we get

$ K=\frac{K_{1} K_{3}}{K_{1}+K_{3}}+\frac{K_{2} K_{3}}{K_{2}+K_{3}} $



NCERT Chapter Video Solution

Dual Pane