Electrostatics 5 Question 11

12. In the figure shown, after the switch ’ $S$ ’ is turned from position ’ $A$ ’ to position ’ $B$ ‘, the energy dissipated in the circuit in terms of capacitance ’ $C$ ’ and total charge ’ $Q$ ’ is

(a) $\frac{3}{4} \cdot \frac{Q^{2}}{C}$

(b) $\frac{5}{8} \cdot \frac{Q^{2}}{C}$

(c) $\frac{1}{8} \cdot \frac{Q^{2}}{C}$

(d) $\frac{3}{8} \cdot \frac{Q^{2}}{C}$

Show Answer

Answer:

Correct Answer: 12. (d)

Solution:

  1. In position ’ $A$ ’ of switch, we have a capacitor joined with battery.

So, energy stored in position

$ U_{1}=\frac{1}{2} C \varepsilon^{2} $

When switch is turned to position $B$, we have a charged capacitor joined to an uncharged capacitor.

Common potential in steady state will be

$ V=\frac{\text { total charge }}{\text { total capacity }}=\frac{C \varepsilon}{4 C}=\frac{\varepsilon}{4} $

Now, energy stored will be

$ \begin{aligned} U_{2} & =\frac{1}{2}\left(C_{\mathrm{eq}}\right)\left(V_{\text {common }}\right)^{2} \\ & =\frac{1}{2} 4 C \times \frac{\varepsilon^{2}}{4}=\frac{1}{8} C \varepsilon^{2} \end{aligned} $

So, energy dissipated is

$ \begin{aligned} \Delta U & =U_{1}-U_{2}=\frac{1}{2} C \varepsilon^{2}-\frac{1}{8} C \varepsilon^{2} \\ & =\frac{3}{8} C \varepsilon^{2}=\frac{3}{8} C \frac{Q}{C}^{2}=\frac{3}{8} \cdot \frac{Q^{2}}{C} \end{aligned} $



NCERT Chapter Video Solution

Dual Pane