Electrostatics 4 Question 4

4. Charges $-q$ and $+q$ located at $A$ and $B$, respectively, constitute an electric dipole. Distance $A B=2 a, O$ is the mid point of the dipole and $O P$ is perpendicular to $A B$. A charge $Q$ is placed at $P$, where $O P=y$ and $y»2 a$. The charge $Q$ experiences an electrostatic force $F$.

(Main 2019, 10 Jan II)

If $Q$ is now moved along the equatorial line to $P^{\prime}$ such that $O P^{\prime}=\Big(\frac{y}{3}\Big)$, the force on $Q$ will be close to $\Big(\frac{y}{3} \gg 2 a\Big)$

(a) $\frac{F}{3}$

(b) $3 F$

(c) $9 F$

(d) $27 F$

Show Answer

Answer:

Correct Answer: 4. (d)

Solution:

  1. Electric field on the equatorial line of a dipole at any point, which is at distance $r$ from the centre is given by

$ E=\frac{2 k P}{\left(r^{2}+a^{2}\right)^{3 / 2}} \cdots(i) $

where, $P$ is the dipole moment of the charges.

Here, $\quad y^{2}»a^{2}$

$\Rightarrow \quad y^{2}+a^{2} \approx y^{2}$

or

$ E_{1}=\frac{2 k P}{y^{3}} \cdots(ii) $

So, force on the charge in its position at $P$ will be

$ F=Q E_{1}=\frac{2 k P Q}{y^{3}} \cdots(iii) $

In second case $r=y / 3$

From Eq. (i), electric field at point $P^{\prime}$ will be

$ E_{2}=\frac{2 k P}{\frac{y}{3}^{2}+a^{2}} $

Again, $\frac{y}{3}»a \Rightarrow \frac{y}{3}^{2}+a^{2} \approx \frac{y}{3}^{2}$

$ \Rightarrow \quad E_{2}=\frac{2 k P}{(y / 3)^{3}} \Rightarrow E_{2}=27 \times \frac{2 k P}{y^{3}} $

Force on charge in this position,

$ F^{\prime}=Q E_{2}=27 \times \frac{2 k P Q}{y^{3}} \cdots(iv) $

From Eqs. (iii) and (iv), we get

$ F^{\prime}=27 F $



NCERT Chapter Video Solution

Dual Pane