Electrostatics 4 Question 4

4. Charges $-q$ and $+q$ located at $A$ and $B$, respectively, constitute an electric dipole. Distance $A B=2 a, O$ is the mid point of the dipole and $O P$ is perpendicular to $A B$. A charge $Q$ is placed at $P$, where $O P=y$ and $y»2 a$. The charge $Q$ experiences an electrostatic force $F$.

(Main 2019, 10 Jan II)

If $Q$ is now moved along the equatorial line to $P^{\prime}$ such that $O P^{\prime}=\frac{y}{3}$, the force on $Q$ will be close to $\frac{y}{3} \gg 2 a$

(a) $\frac{F}{3}$

(b) $3 F$

(c) $9 F$

(d) $27 F$

Show Answer

Solution:

  1. Electric field on the equatorial line of a dipole at any point, which is at distance $r$ from the centre is given by

$$ E=\frac{2 k P}{\left(r^{2}+a^{2}\right)^{3 / 2}} $$

where, $P$ is the dipole moment of the charges.

Here, $\quad y^{2}»a^{2}$

$\Rightarrow \quad y^{2}+a^{2} \approx y^{2}$

or

$$ E _1=\frac{2 k P}{y^{3}} $$

So, force on the charge in its position at $P$ will be

$$ F=Q E _1=\frac{2 k P Q}{y^{3}} $$

In second case $r=y / 3$

From Eq. (i), electric field at point $P^{\prime}$ will be

$$ E _2=\frac{2 k P}{\frac{y}{3}^{2}+a^{2}} $$

Again, $\frac{y}{3}»a \Rightarrow \frac{y}{3}^{2}+a^{2} \approx \frac{y}{3}^{2}$

$$ \Rightarrow \quad E _2=\frac{2 k P}{(y / 3)^{3}} \Rightarrow E _2=27 \times \frac{2 k P}{y^{3}} $$

Force on charge in this position,

$$ F^{\prime}=Q E _2=27 \times \frac{2 k P Q}{y^{3}} $$

From Eqs. (iii) and (iv), we get

$$ F^{\prime}=27 F $$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक