Electromagnetic Induction and Alternating Current 6 Question 9

####9. The instantaneous voltages at three terminals marked $X, Y$ and $Z$ are given by $V_{X}=V_{0} \sin \omega t$,

$V_{Y}=V_{0} \sin \Big(\omega t+\frac{2 \pi}{3})$ and $V_{Z}=V_{0} \sin \Big(\omega t+\frac{4 \pi}{3})$.

An ideal voltmeter is configured to read rms value of the potential difference between its terminals. It is connected between points $X$ and $Y$ and then between $Y$ and $Z$. The reading(s) of the voltmeter will be

(2017 Adv.)

(a) $(V _ {Y Z}) _ {\mathrm{rms}}=V _ {0} \sqrt{\frac{1}{2}}$

(b) $(V _ {X Y}) _ {\mathrm{rms}}=V _ {0} \sqrt{\frac{3}{2}}$

(c) independent of the choice of the two terminals

(d) $(V _ {X Y}) _ {\mathrm{rms}}=V _ {0}$

Show Answer

Answer:

Correct Answer: 9. (b, c)

Solution:

  1. $V_{X Y}=V_{0} \sin \omega t+\frac{2 \pi}{3}-V_{0} \sin \omega t$

$$ =V_{0} \sin \omega t+\frac{2 \pi}{3}+V_{0} \sin (\omega t+\pi) $$

$$ \Rightarrow \quad \varphi=\pi-\frac{2 \pi}{3}=\frac{\pi}{3} $$

$\Rightarrow \quad V_{0}{ }^{\prime}=2 V_{0} \cos \frac{\pi}{6}=\sqrt{3} V_{0}$

$\Rightarrow \quad V_{X Y}=\sqrt{3} V_{0} \sin (\omega t+\varphi)$

$\Rightarrow \quad (V _ {X Y}) _ {\mathrm{rms}}= (V _ {Y Z}) _ {\mathrm{rms}}=\sqrt{\frac{3}{2}} V _ {0}$



NCERT Chapter Video Solution

Dual Pane