Electromagnetic Induction and Alternating Current 6 Question 9

####9. The instantaneous voltages at three terminals marked $X, Y$ and $Z$ are given by $V _X=V _0 \sin \omega t$,

$V _Y=V _0 \sin \Big(\omega t+\frac{2 \pi}{3})$ and $V _Z=V _0 \sin \Big(\omega t+\frac{4 \pi}{3})$.

An ideal voltmeter is configured to read rms value of the potential difference between its terminals. It is connected between points $X$ and $Y$ and then between $Y$ and $Z$. The reading(s) of the voltmeter will be

(2017 Adv.)

(a) $(V _ {Y Z}) _ {rms}=V _ {0} \sqrt{\frac{1}{2}}$

(b) $(V _ {X Y}) _ {rms}=V _ {0} \sqrt{\frac{3}{2}}$

(c) independent of the choice of the two terminals

(d) $(V _ {X Y}) _ {rms}=V _ {0}$

Show Answer

Answer:

Correct Answer: 9. (b, c)

Solution:

  1. $V _{X Y}=V _0 \sin \omega t+\frac{2 \pi}{3}-V _0 \sin \omega t$

$$ =V _0 \sin \omega t+\frac{2 \pi}{3}+V _0 \sin (\omega t+\pi) $$

$$ \Rightarrow \quad \varphi=\pi-\frac{2 \pi}{3}=\frac{\pi}{3} $$

$\Rightarrow \quad V _0{ }^{\prime}=2 V _0 \cos \frac{\pi}{6}=\sqrt{3} V _0$

$\Rightarrow \quad V _{X Y}=\sqrt{3} V _0 \sin (\omega t+\varphi)$

$\Rightarrow \quad (V _ {X Y}) _ {rms}= (V _ {Y Z}) _ {rms}=\sqrt{\frac{3}{2}} V _ {0}$



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक