Electromagnetic Induction and Alternating Current 4 Question 10

####10. A coil of inductance $8.4 \mathrm{mH}$ and resistance $6 \Omega$ is connected to a $12 \mathrm{~V}$ battery. The current in the coil is $1 \mathrm{~A}$ at approximately the time

$(1999,2 \mathrm{M})$

(a) $500 \mathrm{~s}$

(b) $20 \mathrm{~s}$

(c) $35 \mathrm{~ms}$

(d) $1 \mathrm{~ms}$

Show Answer

Answer:

Correct Answer: 10. (d)

Solution:

  1. The current-time $(i-t)$ equation in $L-R$ circuit is given by [Growth of current in $L-R$ circuit]

$$ i=i_{0}\left(1-e^{-t / \tau_{L}}\right) $$

where,

$$ i_{0}=\frac{V}{R}=\frac{12}{6}=2 \mathrm{~A} $$

and

$$ \tau_{L}=\frac{L}{R}=\frac{8.4 \times 10^{-3}}{6}=1.4 \times 10^{-3} \mathrm{~s} $$

and

$$ i=1 \mathrm{~A} $$

$$ t=\text { ? } $$

(given)

Substituting these values in Eq. (i), we get

or

$$ \begin{aligned} & t=0.97 \times 10^{-3} \mathrm{~s} \\ & t=0.97 \mathrm{~ms} \\ & t \approx 1 \mathrm{~ms} \end{aligned} $$



NCERT Chapter Video Solution

Dual Pane