Vectors 4 Question 11

11. Consider the cube in the first octant with sides OP, OQ and OR of length 1, along the X-axis, Y-axis and Z-axis, respectively, where O(0,0,0) is the origin. Let S(12,12,12) be the centre of the cube and T be the vertex of the cube opposite to the origin O such that S lies on the diagonal OT. If p=SP,q=SQ,r=SR and t=ST, then the value of |(p×q)×(r×t)| is ….. .

Show Answer

Answer:

Correct Answer: 11. (0.5)

Solution:

  1. (0.5) Here, P(1,0,0),Q(0,1,0),R(0,0,1),T=(1,1,1) and S=(12,12,12).

Now,

p=SP=OPOS

=(12i^12j^12k^)=12(i^j^k^)

q=SQ=12(i^+j^k^)

r=SR=12(i^j^+k^)

and t=ST=12(i^+j^+k^)

p×q=14|i^j^k^ 111 111|=14(2i^+2j^)

and r×t=14|i^j^k^ 111 111|=14(2i^+2j^)

Now, (p×q)×(r×t)=116|i^j^k^ 220 220|

=116(8k^)=12k^

|(p×q)×(r×t)|=|12k^|=12=0.5



NCERT Chapter Video Solution

Dual Pane