Vectors 3 Question 9

9. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are unit coplanar vectors, then the scalar triple product $[2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}} 2 \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}} 2 \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}]$ is

(2000, 2M)

(a) 0

(b) 1

(c) $-\sqrt{3}$

(d) $\sqrt{3}$

Show Answer

Answer:

Correct Answer: 9. (a)

Solution:

  1. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are coplanar vectors, then $2 \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}, 2 \overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{c}}$ and $2 \overrightarrow{\mathbf{c}}-\overrightarrow{\mathbf{a}}$ are also coplanar vectors.



NCERT Chapter Video Solution

Dual Pane