Vectors 1 Question 5

6. Let O be the origin and let PQR be an arbitrary triangle. The point S is such that

OPOQ+OROS=OROP+OQOS=OQOR+OPOS

Then the triangle PQR has S as its

(2017 Adv.)

(a) centroid

(b) orthocentre

(c) incentre

(d) circumcentre

Show Answer

Answer:

Correct Answer: 6. (b)

Solution:

  1. OPOQ+OROS=OROP+OQOS

OP(OQOR)+OS(OROQ)=0

(OPOS)(OQOR)=0

SPRQ=0

Similarly SRPQ=0 and SQPR=0

S is orthocentre.



NCERT Chapter Video Solution

Dual Pane