Vectors 1 Question 5

6. Let $O$ be the origin and let $P Q R$ be an arbitrary triangle. The point $S$ is such that

$$ \begin{aligned} OP \cdot OQ+OR \cdot OS & =OR \cdot OP+OQ \cdot OS \\ & =OQ \cdot OR+OP \cdot OS \end{aligned} $$

Then the triangle $P Q R$ has $S$ as its

(2017 Adv.)

(a) centroid

(b) orthocentre

(c) incentre

(d) circumcentre

Show Answer

Answer:

Correct Answer: 6. (b)

Solution:

  1. $OP \cdot OQ+OR \cdot OS=OR \cdot OP+OQ \cdot OS$

$\Rightarrow \quad \mathbf{O P}(\mathbf{O Q}-\mathbf{O R})+\mathbf{O S}(\mathbf{O R}-\mathbf{O Q})=0$

$\Rightarrow \quad(\mathbf{O P}-\mathbf{O S})(\mathbf{O Q}-\mathbf{O R})=0$

$\Rightarrow \quad \mathbf{S P} \cdot \mathbf{R Q}=0$

Similarly $\mathbf{S R} \cdot \mathbf{P Q}=0$ and $\mathbf{S Q} \cdot \mathbf{P R}=0$

$\therefore S$ is orthocentre.



जेईई के लिए मॉक टेस्ट

एनसीईआरटी अध्याय वीडियो समाधान

दोहरा फलक