Vectors 1 Question 23

24. The points with position vectors $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}+k \overrightarrow{\mathbf{b}}$ are collinear for all real values of $k$.

(1984, 1M)

Show Answer

Answer:

Correct Answer: 24. (b)

Solution:

  1. Let position vectors of points $\overrightarrow{\mathbf{A}}, \overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{C}}$ be $\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{a}}+k \overrightarrow{\mathbf{b}}$, respectively.

$$ \begin{array}{ll} \therefore & (\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}})-(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})=(\overrightarrow{\mathbf{a}}+k \overrightarrow{\mathbf{b}})-(\overrightarrow{\mathbf{a}}-\overrightarrow{\mathbf{b}}) \\ \Rightarrow & -2 \overrightarrow{\mathbf{b}}=(k+1) \overrightarrow{\mathbf{b}} \\ \Rightarrow & k+1=-2 \\ \Rightarrow & k=-3 \end{array} $$

Hence, it is false statement.



NCERT Chapter Video Solution

Dual Pane