Trigonometrical Equations 3 Question 14

15. The solution set of the system of equations $x+y=\frac{2 \pi}{3}, \cos x+\cos y=\frac{3}{2}$, where $x$ and $y$ are real, is……. .

Show Answer

Answer:

Correct Answer: 15. No solution

Solution:

  1. Given, $x+y=\frac{2 \pi}{3}$

and $\quad \cos x+\cos y=\frac{3}{2}$ $\Rightarrow \cos x+\cos \frac{2 \pi}{3}-x=\frac{3}{2}$

$\Rightarrow \quad \cos x+-\frac{1}{2} \cos x+\frac{\sqrt{3}}{2} \sin x=\frac{3}{2}$

$\Rightarrow \quad \frac{1}{2} \cos x+\frac{\sqrt{3}}{2} \sin x=\frac{3}{2}$

$\Rightarrow \quad \sin \frac{\pi}{6}+x=\frac{3}{2}$, which is never possible.

Hence, no solution exists.



NCERT Chapter Video Solution

Dual Pane