Trigonometrical Equations 1 Question 9

9. If 5(tan2xcos2x)=2cos2x+9, then the value of cos4x is

(2017 Main)

(a) 35

(b) 13

(c) 29

(d) 79

Show Answer

Answer:

Correct Answer: 9. (d)

Solution:

  1. Given, 5(tan2xcos2x)=2cos2x+9

52sin2x2cos2xcos2x=2cos2x+9

51cos2x1+cos2x1+cos2x2=2cos2x+9

Put cos2x=y, we have

51y1+y1+y2=2y+95(22y1y22y)=2(1+y)(2y+9)5(14yy2)=2(2y+9+2y2+9y)520y5y2=22y+18+4y29y2+42y+13=09y2+3y+39y+13=03y(3y+1)+13(3y+1)=0(3y+1)(3y+13)=0y=13,133cos2x=13,133cos2x=13cos2x133

Now, cos4x=2cos22x1

=21321=291=79



NCERT Chapter Video Solution

Dual Pane